IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v122y2017icp94-105.html
   My bibliography  Save this article

The implications of allocation scenarios for global phosphorus flow from agriculture and wastewater

Author

Listed:
  • Lwin, Cherry Myo
  • Murakami, Mari
  • Hashimoto, Seiji

Abstract

The world's population growth has driven the increase of phosphorus fertilizer use in agricultural activities and domestic wastewater containing phosphorus (P). Actually, P used for cultivation and that contained in wastewater flowing into the hydrosphere contributes to severe environmental damage from eutrophication. Related concerns have arisen about the rapid depletion of P resources. Therefore, elucidating the amount of global P flow into bodies of water is extremely important to ascertain its environmental effects and to formulate methods for the sustainable management of P resources. This study was conducted future trends (2010–2100) of global P flows from agriculture and domestic wastewater based on scenarios of numerous parameters that include economic development, population, livestock demand, harvested areas, P removal ratios in sewage treatment facilities, etc. in 26 countries and 27 EU member countries as one combined country group (27 study countries). Results reveal that global P flows from agriculture to the hydrosphere occurred at an annual rate of between 5.7TgPyr−1 and 6.1TgPyr−1 in 2010, but they are expected to double by 2100. P flows from domestic wastewater occurred at an annual rate of 1.3 Tg P to 2.3 Tg P during the studied period. By 2100, the amount of P flowing from agriculture and domestic wastewater in India is expected to rank first in the world, followed in order by China, Brazil, and the United States. Those countries have the largest populations and intensive agricultural activities. According to most results of our scenarios, total P flows are expected to exceed planetary limits during the study period, indicating that marked reduction of fertilizer use is necessary. Recovery of P from sewage sludge can substitute for a small share of fertilizer use. This global research provides a core for the appraisal of P utilization and facilitates determination of important objectives for sustainable P management.

Suggested Citation

  • Lwin, Cherry Myo & Murakami, Mari & Hashimoto, Seiji, 2017. "The implications of allocation scenarios for global phosphorus flow from agriculture and wastewater," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 94-105.
  • Handle: RePEc:eee:recore:v:122:y:2017:i:c:p:94-105
    DOI: 10.1016/j.resconrec.2017.01.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344917300289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2017.01.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kazuyo Matsubae‐Yokoyama & Hironari Kubo & Kenichi Nakajima & Tetsuya Nagasaka, 2009. "A Material Flow Analysis of Phosphorus in Japan," Journal of Industrial Ecology, Yale University, vol. 13(5), pages 687-705, October.
    2. Dunchao Ma & Shanying Hu & Dingjiang Chen & Yourun Li, 2013. "The Temporal Evolution of Anthropogenic Phosphorus Consumption in China and Its Environmental Implications," Journal of Industrial Ecology, Yale University, vol. 17(4), pages 566-577, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hai Bang Truong & Thi Cuc Phuong Tran & Thi Phuong Nguyen & Thi Thao Nguyen Nguyen & Doan Thi Oanh & Duong Thi Thuy & Xuan Cuong Nguyen, 2023. "Biochar-Based Phosphorus Recovery from Different Waste Streams: Sources, Mechanisms, and Performance," Sustainability, MDPI, vol. 15(21), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashton W. Merck & Khara D. Grieger & Alison Deviney & Anna-Maria Marshall, 2023. "Using a Phosphorus Flow Diagram as a Boundary Object to Inform Stakeholder Engagement," Sustainability, MDPI, vol. 15(15), pages 1-10, July.
    2. Chery Myo Lwin & Kyaw Nyunt Maung & Mari Murakami & Seiji Hashimoto, 2017. "Scenarios of Phosphorus Flow from Agriculture and Domestic Wastewater in Myanmar (2010–2100)," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    3. Chowdhury, Rubel Biswas & Moore, Graham A. & Weatherley, Anthony J. & Arora, Meenakshi, 2014. "A review of recent substance flow analyses of phosphorus to identify priority management areas at different geographical scales," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 213-228.
    4. Roland W. Scholz & Gerald Steiner, 2022. "The role of transdisciplinarity for mineral economics and mineral resource management: coping with fallacies related to phosphorus in science and practice," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(3), pages 745-763, December.
    5. Elizabeth Webeck & Kazuyo Matsubae & Tetsuya Nagasaka, 2015. "Phosphorus requirements for the changing diets of China, India and Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(3), pages 455-469, July.
    6. Heng Yi Teah & Motoharu Onuki, 2017. "Support Phosphorus Recycling Policy with Social Life Cycle Assessment: A Case of Japan," Sustainability, MDPI, vol. 9(7), pages 1-16, July.
    7. Cooper, James & Carliell-Marquet, Cynthia, 2013. "A substance flow analysis of phosphorus in the UK food production and consumption system," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 82-100.
    8. Stanley Udochukwu Ofoegbu, 2019. "Technological Challenges of Phosphorus Removal in High-Phosphorus Ores: Sustainability Implications and Possibilities for Greener Ore Processing," Sustainability, MDPI, vol. 11(23), pages 1-38, November.
    9. Wu, Huijun & Yuan, Zengwei & Zhang, Yongliang & Gao, Liangmin & Liu, Shaomin, 2014. "Life-cycle phosphorus use efficiency of the farming system in Anhui Province, Central China," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 1-14.
    10. Jedelhauser, Michael & Binder, Claudia R., 2015. "Losses and efficiencies of phosphorus on a national level – A comparison of European substance flow analyses," Resources, Conservation & Recycling, Elsevier, vol. 105(PB), pages 294-310.
    11. Li, Guohua & van Ittersum, Martin K. & Leffelaar, Peter A. & Sattari, Sheida Z. & Li, Haigang & Huang, Gaoqiang & Zhang, Fusuo, 2016. "A multi-level analysis of China's phosphorus flows to identify options for improved management in agriculture," Agricultural Systems, Elsevier, vol. 144(C), pages 87-100.
    12. Matsubae, Kazuyo & Webeck, Elizabeth & Nansai, Keisuke & Nakajima, Kenichi & Tanaka, Mikiya & Nagasaka, Tetsuya, 2015. "Hidden phosphorus flows related with non-agriculture industrial activities: A focus on steelmaking and metal surface treatment," Resources, Conservation & Recycling, Elsevier, vol. 105(PB), pages 360-367.
    13. Nanda, Madhuri & Kansal, Arun & Cordell, Dana, 2020. "Managing agricultural vulnerability to phosphorus scarcity through bottom-up assessment of regional-scale opportunities," Agricultural Systems, Elsevier, vol. 184(C).
    14. Andrea E. Ulrich & Ewald Schnug, 2013. "The Modern Phosphorus Sustainability Movement: A Profiling Experiment," Sustainability, MDPI, vol. 5(11), pages 1-23, October.
    15. Luo, Zhibo & Ma, Shujie & Hu, Shanying & Chen, Dingjiang, 2017. "Towards the sustainable development of the regional phosphorus resources industry in China: A system dynamics approach," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 186-197.
    16. Chowdhury, Rubel Biswas & Moore, Graham A. & Weatherley, Anthony J., 2018. "A multi-year phosphorus flow analysis of a key agricultural region in Australia to identify options for sustainable management," Agricultural Systems, Elsevier, vol. 161(C), pages 42-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:122:y:2017:i:c:p:94-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.