IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v161y2018icp42-60.html
   My bibliography  Save this article

A multi-year phosphorus flow analysis of a key agricultural region in Australia to identify options for sustainable management

Author

Listed:
  • Chowdhury, Rubel Biswas
  • Moore, Graham A.
  • Weatherley, Anthony J.

Abstract

This paper presents a comprehensive substance flow analysis (SFA) of phosphorus (P) for a six-year period (2008–13) in Gippsland, a key agricultural region of Australia with high economic and environmental significance. The analysis has revealed that around 71% (10,904t) of the mean annual total inflow of P was stored in this region. This finding is different from other published regional scale SFAs, where more than 50% of the P in annual total inflow eventually left the region. Per capita P inflow in Gippsland is also found substantially higher compared to available SFAs. In Gippsland, the annual inflow of P primarily occurred as commercial fertilizer (66% or 10,263t) and livestock feed (29% or 4443t), and the outflow mainly occurred as livestock products (94% or 4181t); while the majority (66% or 7218t) of the P storage occurred in soils of the livestock farming area. A comparative analysis of the magnitude of P flow in different subsystems indicates that more than 80% of the annual total inflow, outflow, and storage of P in this region is associated with the livestock (mainly dairy and meat cattle) farming subsystem. For the Gippsland region as a whole and almost all subsystems, significant annual variations in the magnitudes of P inflow, outflow, storage and internal flow have been observed. Between 2008 and 2013, both the annual total inflow (mainly as commercial fertilizer) and the annual total storage (mainly in soils) of P in this region showed a substantial decrease (41% and 54% of the 2008 level, respectively), while the annual total outflow (mainly as livestock and crop products) remained nearly the same, indicating an improvement towards sustainable P management. Despite such a positive sign, there is still adequate room for improvement. This analysis indicates that over the study period, about 65,424t P were accumulated (mainly as soil storage) that is approximately six times the mean annual P inflow as commercial fertilizer in this region; while approximately 3241t P lost as soil erosion and runoff, indicating substantial adverse economic and environmental implications. Based on the findings of the current analysis, this paper outlines a wide range of policy and management interventions to reduce the downstream loss of P and other nutrients as well as the region's dependency on imported commercial fertilizers and grain based feed. This paper also presents new criteria for data quality analysis and a set of P concentration data of various materials that could be readily utilized in future SFAs of P at any geographical scale. This paper suggests that considering the inter-annual variations in P flow as assessed in this SFA, future research should focus on identifying the influence of socio-environmental, technological and political factors on the magnitude P flow in Gippsland.

Suggested Citation

  • Chowdhury, Rubel Biswas & Moore, Graham A. & Weatherley, Anthony J., 2018. "A multi-year phosphorus flow analysis of a key agricultural region in Australia to identify options for sustainable management," Agricultural Systems, Elsevier, vol. 161(C), pages 42-60.
  • Handle: RePEc:eee:agisys:v:161:y:2018:i:c:p:42-60
    DOI: 10.1016/j.agsy.2017.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X16308630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2017.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrea E. Ulrich & Ewald Schnug, 2013. "The Modern Phosphorus Sustainability Movement: A Profiling Experiment," Sustainability, MDPI, vol. 5(11), pages 1-23, October.
    2. Yuan, Zengwei & Liu, Xin & Wu, Huijun & Zhang, Ling & Bi, Jun, 2011. "Anthropogenic phosphorus flow analysis of Lujiang County, Anhui Province, Central China," Ecological Modelling, Elsevier, vol. 222(8), pages 1534-1543.
    3. Geneviève Metson & Rimjhim Aggarwal & Daniel L. Childers, 2012. "Efficiency Through Proximity," Journal of Industrial Ecology, Yale University, vol. 16(6), pages 914-927, December.
    4. Dunchao Ma & Shanying Hu & Dingjiang Chen & Yourun Li, 2013. "The Temporal Evolution of Anthropogenic Phosphorus Consumption in China and Its Environmental Implications," Journal of Industrial Ecology, Yale University, vol. 17(4), pages 566-577, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sunita Kumari Meena & Brahma Swaroop Dwivedi & Mahesh Chand Meena & Saba Prasad Datta & Vinod Kumar Singh & Rajendra Prasad Mishra & Debashish Chakraborty & Abir Dey & Vijay Singh Meena, 2022. "Long-Term Nutrient Supply Options: Strategies to Improve Soil Phosphorus Availability in the Rice-Wheat System," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    2. Augusto Bianchini & Jessica Rossi, 2020. "An Integrated Industry-Based Methodology to Unlock Full-Scale Implementation of Phosphorus Recovery Technology," Sustainability, MDPI, vol. 12(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chowdhury, Rubel Biswas & Moore, Graham A. & Weatherley, Anthony J. & Arora, Meenakshi, 2014. "A review of recent substance flow analyses of phosphorus to identify priority management areas at different geographical scales," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 213-228.
    2. Jedelhauser, Michael & Binder, Claudia R., 2015. "Losses and efficiencies of phosphorus on a national level – A comparison of European substance flow analyses," Resources, Conservation & Recycling, Elsevier, vol. 105(PB), pages 294-310.
    3. Li, Guohua & van Ittersum, Martin K. & Leffelaar, Peter A. & Sattari, Sheida Z. & Li, Haigang & Huang, Gaoqiang & Zhang, Fusuo, 2016. "A multi-level analysis of China's phosphorus flows to identify options for improved management in agriculture," Agricultural Systems, Elsevier, vol. 144(C), pages 87-100.
    4. Ashton W. Merck & Khara D. Grieger & Alison Deviney & Anna-Maria Marshall, 2023. "Using a Phosphorus Flow Diagram as a Boundary Object to Inform Stakeholder Engagement," Sustainability, MDPI, vol. 15(15), pages 1-10, July.
    5. Egle, L. & Zoboli, O. & Thaler, S. & Rechberger, H. & Zessner, M., 2014. "The Austrian P budget as a basis for resource optimization," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 152-162.
    6. Chery Myo Lwin & Kyaw Nyunt Maung & Mari Murakami & Seiji Hashimoto, 2017. "Scenarios of Phosphorus Flow from Agriculture and Domestic Wastewater in Myanmar (2010–2100)," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    7. Gao, Chengkang & Zhang, Shuaibing & Song, Kaihui & Na, Hongming & Tian, Fan & Zhang, Menghui & Gao, Wengang, 2018. "Conjoint analysis of nitrogen, phosphorus and sulfur metabolism: A case study of Liaoning Province, China," Ecological Modelling, Elsevier, vol. 390(C), pages 70-78.
    8. Alison Deviney & Khara Grieger & Ashton Merck & John Classen & Anna-Maria Marshall, 2023. "Phosphorus sustainability through coordinated stakeholder engagement: a perspective," Environment Systems and Decisions, Springer, vol. 43(3), pages 371-378, September.
    9. Minghui Xu & Yibo Luan & Zhenke Zhang & Shengnan Jiang, 2021. "Dietary pattern changes over Africa and its implication for land requirements for food," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(3), pages 1-26, March.
    10. Lwin, Cherry Myo & Murakami, Mari & Hashimoto, Seiji, 2017. "The implications of allocation scenarios for global phosphorus flow from agriculture and wastewater," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 94-105.
    11. Matsubae, Kazuyo & Webeck, Elizabeth & Nansai, Keisuke & Nakajima, Kenichi & Tanaka, Mikiya & Nagasaka, Tetsuya, 2015. "Hidden phosphorus flows related with non-agriculture industrial activities: A focus on steelmaking and metal surface treatment," Resources, Conservation & Recycling, Elsevier, vol. 105(PB), pages 360-367.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:161:y:2018:i:c:p:42-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.