IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v8y2004i2p11-31.html
   My bibliography  Save this article

Optimal Investment for an Insurer to Minimize Its Probability of Ruin

Author

Listed:
  • Chi Liu
  • Hailiang Yang

Abstract

This paper studies optimal investment strategies of an insurance company. We assume that the insurance company receives premiums at a constant rate, the total claims are modeled by a compound Poisson process, and the insurance company can invest in the money market and in a risky asset such as stocks. This model generalizes the model in Hipp and Plum (2000) by including a risk-free asset. The investment behavior is investigated numerically for various claim-size distributions. The optimal policy and the solution of the associated Hamilton-Jacobi-Bellman equation are then computed under each assumed distribution. Our results provide insights for managers of insurance companies on how to invest. We also investigate the effects of changes in various factors, such as stock volatility, on optimal investment strategies, and survival probability. The model is generalized to cases in which borrowing constraints or reinsurance are present.

Suggested Citation

  • Chi Liu & Hailiang Yang, 2004. "Optimal Investment for an Insurer to Minimize Its Probability of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(2), pages 11-31.
  • Handle: RePEc:taf:uaajxx:v:8:y:2004:i:2:p:11-31
    DOI: 10.1080/10920277.2004.10596134
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2004.10596134
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2004.10596134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:8:y:2004:i:2:p:11-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.