IDEAS home Printed from https://ideas.repec.org/a/eee/quaeco/v89y2023icp244-253.html
   My bibliography  Save this article

FoMO in the Bitcoin market: Revisiting and factors

Author

Listed:
  • Wang, Jying-Nan
  • Liu, Hung-Chun
  • Lee, Yen-Hsien
  • Hsu, Yuan-Teng

Abstract

We revisit the “fear of missing out” (FoMO) effect of Bitcoin by observing asymmetric volatility dynamics and further investigate its driving factors. Using a longer sample period covering the COVID-19 pandemic, our results show evidence of positive asymmetric volatility behavior in the Bitcoin market, confirming the presence of the FoMO effect. This effect also exists in some other major cryptocurrencies. Further analysis indicates that the happiness index, the ratio of short-term to long-term Bitcoin trading volume, and the geopolitical risk index contribute positively to the FoMO, while the volatility index and the Twitter-based uncertainty index exert an opposite effect.

Suggested Citation

  • Wang, Jying-Nan & Liu, Hung-Chun & Lee, Yen-Hsien & Hsu, Yuan-Teng, 2023. "FoMO in the Bitcoin market: Revisiting and factors," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 244-253.
  • Handle: RePEc:eee:quaeco:v:89:y:2023:i:c:p:244-253
    DOI: 10.1016/j.qref.2023.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062976923000534
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.qref.2023.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    2. Bouri, Elie & Lucey, Brian & Roubaud, David, 2020. "Cryptocurrencies and the downside risk in equity investments," Finance Research Letters, Elsevier, vol. 33(C).
    3. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    4. Bouri, Elie & Demirer, Riza & Gabauer, David & Gupta, Rangan, 2022. "Financial market connectedness: The role of investors’ happiness," Finance Research Letters, Elsevier, vol. 44(C).
    5. Urquhart, Andrew, 2018. "What causes the attention of Bitcoin?," Economics Letters, Elsevier, vol. 166(C), pages 40-44.
    6. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    7. Wang, Jying-Nan & Lee, Yen-Hsien & Liu, Hung-Chun & Lee, Ming-Chih, 2022. "The determinants of positive feedback trading behaviors in Bitcoin markets," Finance Research Letters, Elsevier, vol. 45(C).
    8. Aysan, Ahmet Faruk & Demir, Ender & Gozgor, Giray & Lau, Chi Keung Marco, 2019. "Effects of the geopolitical risks on Bitcoin returns and volatility," Research in International Business and Finance, Elsevier, vol. 47(C), pages 511-518.
    9. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    10. You, Wanhai & Guo, Yawei & Peng, Cheng, 2017. "Twitter's daily happiness sentiment and the predictability of stock returns," Finance Research Letters, Elsevier, vol. 23(C), pages 58-64.
    11. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    12. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    13. Jying-Nan Wang & Hung-Chun Liu & Shuang Zhang & Yuan-Teng Hsu, 2021. "How does the informed trading impact Bitcoin returns and volatility?," Applied Economics, Taylor & Francis Journals, vol. 53(28), pages 3223-3233, June.
    14. Bouri, Elie & Azzi, Georges & Dyhrberg, Anne Haubo, 2017. "On the return-volatility relationship in the Bitcoin market around the price crash of 2013," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-16.
    15. Ma, Yao & Yang, Baochen & Su, Yunpeng, 2021. "Stock return predictability: Evidence from moving averages of trading volume," Pacific-Basin Finance Journal, Elsevier, vol. 65(C).
    16. Vidal-Tomás, David & Ibañez, Ana, 2018. "Semi-strong efficiency of Bitcoin," Finance Research Letters, Elsevier, vol. 27(C), pages 259-265.
    17. Chen, Yu-Fu & Mu, Xiaoyi, 2021. "Asymmetric volatility in commodity markets," Journal of Commodity Markets, Elsevier, vol. 22(C).
    18. Troster, Victor & Tiwari, Aviral Kumar & Shahbaz, Muhammad & Macedo, Demian Nicolás, 2019. "Bitcoin returns and risk: A general GARCH and GAS analysis," Finance Research Letters, Elsevier, vol. 30(C), pages 187-193.
    19. Andreas Hackethal & Tobin Hanspal & Dominique M Lammer & Kevin Rink, 2022. "The Characteristics and Portfolio Behavior of Bitcoin Investors: Evidence from Indirect Cryptocurrency Investments [The investor in structured retail products: advice driven or gambling oriented]," Review of Finance, European Finance Association, vol. 26(4), pages 855-898.
    20. Zhang, Jilin & Lai, Yongzeng & Lin, Jianghong, 2017. "The day-of-the-Week effects of stock markets in different countries," Finance Research Letters, Elsevier, vol. 20(C), pages 47-62.
    21. Cheikh, Nidhaleddine Ben & Zaied, Younes Ben & Chevallier, Julien, 2020. "Asymmetric volatility in cryptocurrency markets: New evidence from smooth transition GARCH models," Finance Research Letters, Elsevier, vol. 35(C).
    22. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    23. Muhammad Abubakr Naeem & Imen Mbarki & Muhammed Tahir Suleman & Xuan Vinh Vo & Syed Jawad Hussain Shahzad, 2021. "Does Twitter Happiness Sentiment predict cryptocurrency?," International Review of Finance, International Review of Finance Ltd., vol. 21(4), pages 1529-1538, December.
    24. Stavros Stavroyiannis & Vassilios Babalos, 2017. "Herding, Faith-Based Investments and the Global Financial Crisis: Empirical Evidence From Static and Dynamic Models," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 18(4), pages 478-489, October.
    25. Baur, Dirk G. & Dimpfl, Thomas, 2018. "Asymmetric volatility in cryptocurrencies," Economics Letters, Elsevier, vol. 173(C), pages 148-151.
    26. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    27. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    28. Mensi, Walid & Al-Yahyaee, Khamis Hamed & Kang, Sang Hoon, 2019. "Structural breaks and double long memory of cryptocurrency prices: A comparative analysis from Bitcoin and Ethereum," Finance Research Letters, Elsevier, vol. 29(C), pages 222-230.
    29. Feng, Wenjun & Wang, Yiming & Zhang, Zhengjun, 2018. "Informed trading in the Bitcoin market," Finance Research Letters, Elsevier, vol. 26(C), pages 63-70.
    30. Aalborg, Halvor Aarhus & Molnár, Peter & de Vries, Jon Erik, 2019. "What can explain the price, volatility and trading volume of Bitcoin?," Finance Research Letters, Elsevier, vol. 29(C), pages 255-265.
    31. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    32. Gök, Remzi & Bouri, Elie & Gemici, Eray, 2022. "Can Twitter-based economic uncertainty predict safe-haven assets under all market conditions and investment horizons?," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    33. Charles Corrado & Cameron Truong, 2007. "Forecasting Stock Index Volatility: Comparing Implied Volatility And The Intraday High–Low Price Range," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 30(2), pages 201-215, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessio Brini & Jimmie Lenz, 2024. "A comparison of cryptocurrency volatility-benchmarking new and mature asset classes," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-38, December.
    2. Lin, Xudong & Meng, Yiqun & Zhu, Hao, 2023. "How connected is the crypto market risk to investor sentiment?," Finance Research Letters, Elsevier, vol. 56(C).
    3. Alessio Brini & Jimmie Lenz, 2024. "A Comparison of Cryptocurrency Volatility-benchmarking New and Mature Asset Classes," Papers 2404.04962, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    2. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    3. Kakinaka, Shinji & Umeno, Ken, 2022. "Asymmetric volatility dynamics in cryptocurrency markets on multi-time scales," Research in International Business and Finance, Elsevier, vol. 62(C).
    4. Hung, Jui-Cheng & Liu, Hung-Chun & Yang, J. Jimmy, 2020. "Improving the realized GARCH’s volatility forecast for Bitcoin with jump-robust estimators," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    5. Wang, Jying-Nan & Lee, Yen-Hsien & Liu, Hung-Chun & Lee, Ming-Chih, 2022. "The determinants of positive feedback trading behaviors in Bitcoin markets," Finance Research Letters, Elsevier, vol. 45(C).
    6. Aharon, David Y. & Butt, Hassan Anjum & Jaffri, Ali & Nichols, Brian, 2023. "Asymmetric volatility in the cryptocurrency market: New evidence from models with structural breaks," International Review of Financial Analysis, Elsevier, vol. 87(C).
    7. Ştefan Cristian Gherghina & Liliana Nicoleta Simionescu, 2023. "Exploring the asymmetric effect of COVID-19 pandemic news on the cryptocurrency market: evidence from nonlinear autoregressive distributed lag approach and frequency domain causality," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-58, December.
    8. Böyükaslan, Adem & Ecer, Fatih, 2021. "Determination of drivers for investing in cryptocurrencies through a fuzzy full consistency method-Bonferroni (FUCOM-F’B) framework," Technology in Society, Elsevier, vol. 67(C).
    9. Kislay Kumar Jha & Dirk G. Baur, 2020. "Regime-Dependent Good and Bad Volatility of Bitcoin," JRFM, MDPI, vol. 13(12), pages 1-16, December.
    10. Umar, Muhammad & Rizvi, Syed Kumail Abbas & Naqvi, Bushra, 2021. "Dance with the devil? The nexus of fourth industrial revolution, technological financial products and volatility spillovers in global financial system," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    11. Karim, Muhammad Mahmudul & Ali, Md Hakim & Yarovaya, Larisa & Uddin, Md Hamid & Hammoudeh, Shawkat, 2023. "Return-volatility relationships in cryptocurrency markets: Evidence from asymmetric quantiles and non-linear ARDL approach," International Review of Financial Analysis, Elsevier, vol. 90(C).
    12. Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    13. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    14. Eross, Andrea & McGroarty, Frank & Urquhart, Andrew & Wolfe, Simon, 2019. "The intraday dynamics of bitcoin," Research in International Business and Finance, Elsevier, vol. 49(C), pages 71-81.
    15. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    16. Linton, Oliver & Whang, Yoon-Jae & Yen, Yu-Min, 2016. "A nonparametric test of a strong leverage hypothesis," Journal of Econometrics, Elsevier, vol. 194(1), pages 153-186.
    17. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2023. "Predictability of crypto returns: The impact of trading behavior," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    18. Baur, Dirk G. & Dimpfl, Thomas, 2018. "The asymmetric return-volatility relationship of commodity prices," Energy Economics, Elsevier, vol. 76(C), pages 378-387.
    19. Zhou, Jian, 2016. "A high-frequency analysis of the interactions between REIT return and volatility," Economic Modelling, Elsevier, vol. 56(C), pages 102-108.
    20. Lyócsa, Štefan & Molnár, Peter & Plíhal, Tomáš & Širaňová, Mária, 2020. "Impact of macroeconomic news, regulation and hacking exchange markets on the volatility of bitcoin," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).

    More about this item

    Keywords

    Bitcoin; FoMO; Cryptocurrency; GJR-GARCH; Rolling estimation;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:quaeco:v:89:y:2023:i:c:p:244-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620167 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.