IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v96y2024ipas1057521924005490.html
   My bibliography  Save this article

Exploring asymmetries in cryptocurrency intraday returns and implied volatility: New evidence for high-frequency traders

Author

Listed:
  • Karim, Muhammad Mahmudul
  • Shah, Mohamed Eskandar
  • Noman, Abu Hanifa Md.
  • Yarovaya, Larisa

Abstract

This paper aims to analyze the return-volatility relationship of Bitcoin and Ethereum across different return frequencies and all conditional quantiles of implied volatility, based on a unique 6.5 million observations. We employ the newly constructed Model-Free Implied Volatility (MFIV) of Bitcoin (BitVol) and Ethereum (EthVol) and use an asymmetric Quantile Regression Model (QRM) to capture the intraday asymmetric return-volatility relationship at different quantiles of the distribution of the dependent variable. Our findings show that the estimated coefficient using daily data is significant only at medium- to high-volatility regimes, while the estimated coefficients using high-frequency data are highly significant across all volatility regimes. Moreover, our results indicate that the asymmetry varies across frequencies and quantiles, with weak asymmetric effects at low quantiles and high frequencies, and strong asymmetric effects at high quantiles and low frequencies. This study provides new insight, especially for high-frequency traders.

Suggested Citation

  • Karim, Muhammad Mahmudul & Shah, Mohamed Eskandar & Noman, Abu Hanifa Md. & Yarovaya, Larisa, 2024. "Exploring asymmetries in cryptocurrency intraday returns and implied volatility: New evidence for high-frequency traders," International Review of Financial Analysis, Elsevier, vol. 96(PA).
  • Handle: RePEc:eee:finana:v:96:y:2024:i:pa:s1057521924005490
    DOI: 10.1016/j.irfa.2024.103617
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521924005490
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2024.103617?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. da Gama Silva, Paulo Vitor Jordão & Klotzle, Marcelo Cabus & Pinto, Antonio Carlos Figueiredo & Gomes, Leonardo Lima, 2019. "Herding behavior and contagion in the cryptocurrency market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 22(C), pages 41-50.
    2. Charles, Amélie & Darné, Olivier, 2019. "Volatility estimation for Bitcoin: Replication and robustness," International Economics, Elsevier, vol. 157(C), pages 23-32.
    3. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    4. Jonathan Bloomfield & Remco Polman & Peter O’Donoghue, 2004. "The ‘Bloomfield Movement Classification’: Motion Analysis of Individual Players in Dynamic Movement Sports," International Journal of Performance Analysis in Sport, Taylor & Francis Journals, vol. 4(2), pages 20-31, December.
    5. Tiwari, Aviral Kumar & Jana, R.K. & Das, Debojyoti & Roubaud, David, 2018. "Informational efficiency of Bitcoin—An extension," Economics Letters, Elsevier, vol. 163(C), pages 106-109.
    6. Shefrin, Hersh, 2008. "A Behavioral Approach to Asset Pricing," Elsevier Monographs, Elsevier, edition 2, number 9780123743565.
    7. Cross, Jamie L. & Hou, Chenghan & Trinh, Kelly, 2021. "Returns, volatility and the cryptocurrency bubble of 2017–18," Economic Modelling, Elsevier, vol. 104(C).
    8. Bouri, Elie & Gupta, Rangan & Roubaud, David, 2019. "Herding behaviour in cryptocurrencies," Finance Research Letters, Elsevier, vol. 29(C), pages 216-221.
    9. Selgin, George, 2015. "Synthetic commodity money," Journal of Financial Stability, Elsevier, vol. 17(C), pages 92-99.
    10. Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
    11. Bibinger, Markus & Winkelmann, Lars, 2015. "Econometrics of co-jumps in high-frequency data with noise," Journal of Econometrics, Elsevier, vol. 184(2), pages 361-378.
    12. Corbet, Shaen & Lucey, Brian & Yarovaya, Larisa, 2018. "Datestamping the Bitcoin and Ethereum bubbles," Finance Research Letters, Elsevier, vol. 26(C), pages 81-88.
    13. Pal, Debdatta & Mitra, Subrata K., 2017. "Time-frequency contained co-movement of crude oil and world food prices: A wavelet-based analysis," Energy Economics, Elsevier, vol. 62(C), pages 230-239.
    14. Cheikh, Nidhaleddine Ben & Zaied, Younes Ben & Chevallier, Julien, 2020. "Asymmetric volatility in cryptocurrency markets: New evidence from smooth transition GARCH models," Finance Research Letters, Elsevier, vol. 35(C).
    15. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    16. Nadarajah, Saralees & Chu, Jeffrey, 2017. "On the inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 150(C), pages 6-9.
    17. Obryan Poyser, 2018. "Herding behavior in cryptocurrency markets," Papers 1806.11348, arXiv.org, revised Nov 2018.
    18. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    19. Chaim, Pedro & Laurini, Márcio P., 2018. "Volatility and return jumps in bitcoin," Economics Letters, Elsevier, vol. 173(C), pages 158-163.
    20. Baur, Dirk G. & Dimpfl, Thomas, 2018. "Asymmetric volatility in cryptocurrencies," Economics Letters, Elsevier, vol. 173(C), pages 148-151.
    21. Katsiampa, Paraskevi & Yarovaya, Larisa & Zięba, Damian, 2022. "High-frequency connectedness between Bitcoin and other top-traded crypto assets during the COVID-19 crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    22. Ballis, Antonis & Drakos, Konstantinos, 2020. "Testing for herding in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 33(C).
    23. Salisu, Afees A. & Ogbonna, Ahamuefula E., 2022. "The return volatility of cryptocurrencies during the COVID-19 pandemic: Assessing the news effect," Global Finance Journal, Elsevier, vol. 54(C).
    24. Bouri, Elie & Azzi, Georges & Dyhrberg, Anne Haubo, 2017. "On the return-volatility relationship in the Bitcoin market around the price crash of 2013," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-16.
    25. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    26. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    27. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    28. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    29. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    30. Li, Keming, 2020. "Does Information Asymmetry Impede Market Efficiency? Evidence from Analyst Coverage," Journal of Banking & Finance, Elsevier, vol. 118(C).
    31. Corbet, Shaen & Katsiampa, Paraskevi, 2020. "Asymmetric mean reversion of Bitcoin price returns," International Review of Financial Analysis, Elsevier, vol. 71(C).
    32. Ihsan Ullah Badshah, 2013. "Quantile Regression Analysis of the Asymmetric Return‐Volatility Relation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(3), pages 235-265, March.
    33. Karim, Muhammad Mahmudul & Kawsar, Najmul Haque & Ariff, Mohamed & Masih, Mansur, 2022. "Does implied volatility (or fear index) affect Islamic stock returns and conventional stock returns differently? Wavelet-based granger-causality, asymmetric quantile regression and NARDL approaches," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 77(C).
    34. Badshah, Ihsan & Frijns, Bart & Knif, Johan & Tourani-Rad, Alireza, 2016. "Asymmetries of the intraday return-volatility relation," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 182-192.
    35. Naeem, Muhammad Abubakr & Karim, Sitara & Abrar, Afsheen & Yarovaya, Larisa & Shah, Adil Ahmad, 2023. "Non-linear relationship between oil and cryptocurrencies: Evidence from returns and shocks," International Review of Financial Analysis, Elsevier, vol. 89(C).
    36. Banerjee, Ameet Kumar & Akhtaruzzaman, Md & Dionisio, Andreia & Almeida, Dora & Sensoy, Ahmet, 2022. "Nonlinear nexus between cryptocurrency returns and COVID-19 news sentiment," Journal of Behavioral and Experimental Finance, Elsevier, vol. 36(C).
    37. Valeri Voev & Asger Lunde, 2007. "Integrated Covariance Estimation using High-frequency Data in the Presence of Noise," Journal of Financial Econometrics, Oxford University Press, vol. 5(1), pages 68-104.
    38. Leirvik, Thomas, 2022. "Cryptocurrency returns and the volatility of liquidity," Finance Research Letters, Elsevier, vol. 44(C).
    39. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    40. Zhang, Zehua & Zhao, Ran, 2023. "Good volatility, bad volatility, and the cross section of cryptocurrency returns," International Review of Financial Analysis, Elsevier, vol. 89(C).
    41. C. Baek & M. Elbeck, 2015. "Bitcoins as an investment or speculative vehicle? A first look," Applied Economics Letters, Taylor & Francis Journals, vol. 22(1), pages 30-34, January.
    42. Wang, Jinghua & Ngene, Geoffrey M., 2020. "Does Bitcoin still own the dominant power? An intraday analysis," International Review of Financial Analysis, Elsevier, vol. 71(C).
    43. Karim, Muhammad Mahmudul & Ali, Md Hakim & Yarovaya, Larisa & Uddin, Md Hamid & Hammoudeh, Shawkat, 2023. "Return-volatility relationships in cryptocurrency markets: Evidence from asymmetric quantiles and non-linear ARDL approach," International Review of Financial Analysis, Elsevier, vol. 90(C).
    44. Aguilera, Roberto F. & Radetzki, Marian, 2017. "The synchronized and exceptional price performance of oil and gold: Explanations and prospects," Resources Policy, Elsevier, vol. 54(C), pages 81-87.
    45. Aït-Sahalia, Yacine & Xiu, Dacheng, 2019. "A Hausman test for the presence of market microstructure noise in high frequency data," Journal of Econometrics, Elsevier, vol. 211(1), pages 176-205.
    46. Yarovaya, Larisa & Zięba, Damian, 2022. "Intraday volume-return nexus in cryptocurrency markets: Novel evidence from cryptocurrency classification," Research in International Business and Finance, Elsevier, vol. 60(C).
    47. Muhammad Mahmudul Karim & Mansur Masih, 2021. "Do the Islamic Stock Market Returns Respond Differently to the Realized and Implied Volatility of Oil Prices? Evidence from the Time–Frequency Analysis," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(9), pages 2616-2631, July.
    48. Baur, Dirk G. & Hong, KiHoon & Lee, Adrian D., 2018. "Bitcoin: Medium of exchange or speculative assets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 177-189.
    49. Banerjee, Ameet Kumar, 2021. "Futures market and the contagion effect of COVID-19 syndrome," Finance Research Letters, Elsevier, vol. 43(C).
    50. Amine Lahiani & Ahmed Jeribi & Nabila Boukef Jlassi, 2021. "Nonlinear tail dependence in cryptocurrency-stock market returns: The role of Bitcoin futures," Post-Print hal-03573206, HAL.
    51. Wei, Wang Chun, 2018. "Liquidity and market efficiency in cryptocurrencies," Economics Letters, Elsevier, vol. 168(C), pages 21-24.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karim, Muhammad Mahmudul & Ali, Md Hakim & Yarovaya, Larisa & Uddin, Md Hamid & Hammoudeh, Shawkat, 2023. "Return-volatility relationships in cryptocurrency markets: Evidence from asymmetric quantiles and non-linear ARDL approach," International Review of Financial Analysis, Elsevier, vol. 90(C).
    2. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    3. Karim, Muhammad Mahmudul & Kawsar, Najmul Haque & Ariff, Mohamed & Masih, Mansur, 2022. "Does implied volatility (or fear index) affect Islamic stock returns and conventional stock returns differently? Wavelet-based granger-causality, asymmetric quantile regression and NARDL approaches," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 77(C).
    4. Ahmed, Mohamed Shaker & El-Masry, Ahmed A. & Al-Maghyereh, Aktham I. & Kumar, Satish, 2024. "Cryptocurrency volatility: A review, synthesis, and research agenda," Research in International Business and Finance, Elsevier, vol. 71(C).
    5. Ahmed, Walid M.A., 2021. "How do Islamic equity markets respond to good and bad volatility of cryptocurrencies? The case of Bitcoin," Pacific-Basin Finance Journal, Elsevier, vol. 70(C).
    6. Ahmed, Walid M.A., 2020. "Is there a risk-return trade-off in cryptocurrency markets? The case of Bitcoin," Journal of Economics and Business, Elsevier, vol. 108(C).
    7. Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
    8. Eross, Andrea & McGroarty, Frank & Urquhart, Andrew & Wolfe, Simon, 2019. "The intraday dynamics of bitcoin," Research in International Business and Finance, Elsevier, vol. 49(C), pages 71-81.
    9. Khanh Hoang & Cuong C. Nguyen & Kongchheng Poch & Thang X. Nguyen, 2020. "Does Bitcoin Hedge Commodity Uncertainty?," JRFM, MDPI, vol. 13(6), pages 1-14, June.
    10. Khaki, Audil & Prasad, Mason & Al-Mohamad, Somar & Bakry, Walid & Vo, Xuan Vinh, 2023. "Re-evaluating portfolio diversification and design using cryptocurrencies: Are decentralized cryptocurrencies enough?," Research in International Business and Finance, Elsevier, vol. 64(C).
    11. Kislay Kumar Jha & Dirk G. Baur, 2020. "Regime-Dependent Good and Bad Volatility of Bitcoin," JRFM, MDPI, vol. 13(12), pages 1-16, December.
    12. T. Takaishi, 2021. "Power-Law Return-Volatility Cross Correlations of Bitcoin," Papers 2102.08187, arXiv.org.
    13. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    14. Yuzhi Cai & Thanaset Chevapatrakul & Danilo V. Mascia, 2021. "How is price explosivity triggered in the cryptocurrency markets?," Annals of Operations Research, Springer, vol. 307(1), pages 37-51, December.
    15. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    16. Badshah, Ihsan & Frijns, Bart & Knif, Johan & Tourani-Rad, Alireza, 2016. "Asymmetries of the intraday return-volatility relation," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 182-192.
    17. Suzanne G. M. Fifield & David G. McMillan & Fiona J. McMillan, 2020. "Is there a risk and return relation?," The European Journal of Finance, Taylor & Francis Journals, vol. 26(11), pages 1075-1101, July.
    18. Vidal-Tomás, David, 2021. "The entry and exit dynamics of the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 58(C).
    19. Zhang, Xinxin & Bouri, Elie & Xu, Yahua & Zhang, Gongqiu, 2022. "The asymmetric relationship between returns and implied higher moments: Evidence from the crude oil market," Energy Economics, Elsevier, vol. 109(C).
    20. Wang, Jying-Nan & Liu, Hung-Chun & Hsu, Yuan-Teng, 2020. "Time-of-day periodicities of trading volume and volatility in Bitcoin exchange: Does the stock market matter?," Finance Research Letters, Elsevier, vol. 34(C).

    More about this item

    Keywords

    Return-volatility; Cryptocurrencies; Asymmetric; Quintile regression; Return frequencies;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:96:y:2024:i:pa:s1057521924005490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.