IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v91y2004i2p135-147.html
   My bibliography  Save this article

Modelling the slab stack shuffling problem in developing steel rolling schedules and its solution using improved Parallel Genetic Algorithms

Author

Listed:
  • Singh, Kumar Ashutosh
  • Srinivas
  • Tiwari, M. K.

Abstract

No abstract is available for this item.

Suggested Citation

  • Singh, Kumar Ashutosh & Srinivas & Tiwari, M. K., 2004. "Modelling the slab stack shuffling problem in developing steel rolling schedules and its solution using improved Parallel Genetic Algorithms," International Journal of Production Economics, Elsevier, vol. 91(2), pages 135-147, September.
  • Handle: RePEc:eee:proeco:v:91:y:2004:i:2:p:135-147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(03)00260-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2000. "A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex," European Journal of Operational Research, Elsevier, vol. 124(2), pages 267-282, July.
    2. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2000. "A mathematical programming model for scheduling steelmaking-continuous casting production," European Journal of Operational Research, Elsevier, vol. 120(2), pages 423-435, January.
    3. L Tang & J Liu & A Rong & Z Yang, 2001. "An effective heuristic algorithm to minimise stack shuffles in selecting steel slabs from the slab yard for heating and rolling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(10), pages 1091-1097, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sven Boge & Sigrid Knust, 2023. "The blocks relocation problem with item families minimizing the number of reshuffles," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(2), pages 395-435, June.
    2. Xiaoyu Yu & Jingyi Qian & Yajing Zhang & Min Kong, 2023. "Supply Chain Scheduling Method for the Coordination of Agile Production and Port Delivery Operation," Mathematics, MDPI, vol. 11(15), pages 1-24, July.
    3. Ruiyou Zhang & Shixin Liu & Herbert Kopfer, 2016. "Tree search procedures for the blocks relocation problem with batch moves," Flexible Services and Manufacturing Journal, Springer, vol. 28(3), pages 397-424, September.
    4. Lixin Tang & Ren Zhao & Jiyin Liu, 2012. "Models and algorithms for shuffling problems in steel plants," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(7), pages 502-524, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torres, Nelson & Greivel, Gus & Betz, Joshua & Moreno, Eduardo & Newman, Alexandra & Thomas, Brian, 2024. "Optimizing steel coil production schedules under continuous casting and hot rolling," European Journal of Operational Research, Elsevier, vol. 314(2), pages 496-508.
    2. Liu, Shixin & Tang, Jiafu & Song, Jianhai, 2006. "Order-planning model and algorithm for manufacturing steel sheets," International Journal of Production Economics, Elsevier, vol. 100(1), pages 30-43, March.
    3. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2001. "A review of planning and scheduling systems and methods for integrated steel production," European Journal of Operational Research, Elsevier, vol. 133(1), pages 1-20, August.
    4. Yuan, Shuai & Skinner, Bradley & Huang, Shoudong & Liu, Dikai, 2013. "A new crossover approach for solving the multiple travelling salesmen problem using genetic algorithms," European Journal of Operational Research, Elsevier, vol. 228(1), pages 72-82.
    5. Vo[ss], Stefan & Witt, Andreas, 2007. "Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements: A real-world application," International Journal of Production Economics, Elsevier, vol. 105(2), pages 445-458, February.
    6. Su, Fuyong & Kong, Linglu & Wang, Hui & Wen, Zhi, 2021. "Modeling and application for rolling scheduling problem based on TSP," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    7. Antonio Jiménez-Martín & Alfonso Mateos & Josefa Z. Hernández, 2021. "Aluminium Parts Casting Scheduling Based on Simulated Annealing," Mathematics, MDPI, vol. 9(7), pages 1-18, March.
    8. Zanoni, Simone & Zavanella, Lucio, 2005. "Model and analysis of integrated production-inventory system: The case of steel production," International Journal of Production Economics, Elsevier, vol. 93(1), pages 197-205, January.
    9. D de Ladurantaye & M Gendreau & J-Y Potvin, 2007. "Scheduling a hot rolling mill," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 288-300, March.
    10. Bellabdaoui, A. & Teghem, J., 2006. "A mixed-integer linear programming model for the continuous casting planning," International Journal of Production Economics, Elsevier, vol. 104(2), pages 260-270, December.
    11. Pieter Moerloose & Broos Maenhout, 2023. "A two-stage local search heuristic for solving the steelmaking continuous casting scheduling problem with dual shared-resource and blocking constraints," Operational Research, Springer, vol. 23(1), pages 1-43, March.
    12. Mujawar, Sachin & Huang, Simin & Nagi, Rakesh, 2012. "Scheduling to minimize stringer utilization for continuous annealing operations," Omega, Elsevier, vol. 40(4), pages 437-444.
    13. Wang, John & Yan, Ruiliang & Hollister, Kimberly & Zhu, Dan, 2008. "A historic review of management science research in China," Omega, Elsevier, vol. 36(6), pages 919-932, December.
    14. Haluk Yapicioglu, 2018. "Multiperiod Multi Traveling Salesmen Problem Considering Time Window Constraints with an Application to a Real World Case," Networks and Spatial Economics, Springer, vol. 18(4), pages 773-801, December.
    15. Ricardo Pérez-Rodríguez, 2024. "A Radial Memetic Algorithm to Resolve the No-Wait Job-Shop Scheduling Problem," Mathematics, MDPI, vol. 12(21), pages 1-15, October.
    16. Nikolakopoulos, Athanassios & Sarimveis, Haralambos, 2007. "A threshold accepting heuristic with intense local search for the solution of special instances of the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1911-1929, March.
    17. Kara, Imdat & Bektas, Tolga, 2006. "Integer linear programming formulations of multiple salesman problems and its variations," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1449-1458, November.
    18. Tang, Lixin & Zhao, Yufang, 2008. "Scheduling a single semi-continuous batching machine," Omega, Elsevier, vol. 36(6), pages 992-1004, December.
    19. Sven Boge & Sigrid Knust, 2023. "The blocks relocation problem with item families minimizing the number of reshuffles," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(2), pages 395-435, June.
    20. Tamás Kalmár-Nagy & Giovanni Giardini & Bendegúz Dezső Bak, 2017. "The Multiagent Planning Problem," Complexity, Hindawi, vol. 2017, pages 1-12, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:91:y:2004:i:2:p:135-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.