IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v276y2024ics0925527324002330.html
   My bibliography  Save this article

Integrating resilience and reliability in semiconductor supply chains during disruptions

Author

Listed:
  • Kumar, Devesh
  • Soni, Gunjan
  • Mangla, Sachin Kumar
  • Liao, Jiajia
  • Rathore, A.P.S.
  • Kazancoglu, Yigit

Abstract

The semiconductor industry, a cornerstone of modern technology, has been crucial in driving globalization and supporting various sectors, from consumer electronics to automotive industries. However, in recent years, the industry has faced substantial challenges threatening its ability to meet the surging demand for semiconductor chips. Disruptions at any point in the supply chain, from raw material sourcing to end-product delivery, can substantially influence the semiconductor ecosystem. The intricate nature of such SCs makes them highly vulnerable to various disruptions, emphasizing the critical need for building resilient and reliable supply chain strategies. This article presents comprehensive research aimed at addressing critical gaps in the understanding and management of resilience and reliability within the semiconductor supply chain (SSC). This study proposes a multi-objective mixed-integer non-linear programming (MO-MINLP) model to configure an SSC while considering reliability and resilience measures. It emphasizes and draws attention to the importance of resilience and reliability in managing SSC disruptions during a pandemic and potential future epidemic outbreak. Exploring the precise breakdown of batch transportation between two sites shows how disruption can affect product flow along the SC. The applicability of the proposed method is demonstrated through a numerical example of an SSC, solved using the LINGO solver. Finally, a sensitivity analysis is conducted on the model's parameters to assess the capability and effectiveness of the results from managerial viewpoints.

Suggested Citation

  • Kumar, Devesh & Soni, Gunjan & Mangla, Sachin Kumar & Liao, Jiajia & Rathore, A.P.S. & Kazancoglu, Yigit, 2024. "Integrating resilience and reliability in semiconductor supply chains during disruptions," International Journal of Production Economics, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:proeco:v:276:y:2024:i:c:s0925527324002330
    DOI: 10.1016/j.ijpe.2024.109376
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527324002330
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2024.109376?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hammami, Ramzi & Frein, Yannick & Hadj-Alouane, Atidel B., 2008. "Supply chain design in the delocalization context: Relevant features and new modeling tendencies," International Journal of Production Economics, Elsevier, vol. 113(2), pages 641-656, June.
    2. Jian Yang & Jichang Dong & Suixiang Gao & Guoqing Wang, 2023. "Blockchain-Based Long-Term Capacity Planning for Semiconductor Supply Chain Manufacturers," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    3. Vidal, Carlos J. & Goetschalckx, Marc, 1997. "Strategic production-distribution models: A critical review with emphasis on global supply chain models," European Journal of Operational Research, Elsevier, vol. 98(1), pages 1-18, April.
    4. Ramani, Vinay & Ghosh, Debabrata & Sodhi, ManMohan S., 2022. "Understanding systemic disruption from the Covid-19-induced semiconductor shortage for the auto industry," Omega, Elsevier, vol. 113(C).
    5. Ataman Nikian & Hassan Khademi Zare & Mohammad Mehdi Lotfi & Mohammad Saber Fallah Nezhad, 2023. "Redesign of a sustainable and resilient closed-loop supply chain network under uncertainty and disruption caused by sanctions and COVID-19," Operations Management Research, Springer, vol. 16(2), pages 1019-1042, June.
    6. Thillai Raja Pertheban & Ramayah Thurasamy & Anbalagan Marimuthu & Kumara Rajah Venkatachalam & Sanmugam Annamalah & Pradeep Paraman & Wong Chee Hoo, 2023. "The Impact of Proactive Resilience Strategies on Organizational Performance: Role of Ambidextrous and Dynamic Capabilities of SMEs in Manufacturing Sector," Sustainability, MDPI, vol. 15(16), pages 1-32, August.
    7. Albert Munoz & Michelle Dunbar, 2015. "On the quantification of operational supply chain resilience," International Journal of Production Research, Taylor & Francis Journals, vol. 53(22), pages 6736-6751, November.
    8. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    9. Lars Mönch & Reha Uzsoy & John W. Fowler, 2018. "A survey of semiconductor supply chain models part I: semiconductor supply chains, strategic network design, and supply chain simulation," International Journal of Production Research, Taylor & Francis Journals, vol. 56(13), pages 4524-4545, July.
    10. Kamalahmadi, Masoud & Parast, Mahour Mellat, 2016. "A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research," International Journal of Production Economics, Elsevier, vol. 171(P1), pages 116-133.
    11. Christopher M. Durugbo & Zainab Al-Balushi, 2023. "Correction to: Supply chain management in times of crisis: a systematic review," Management Review Quarterly, Springer, vol. 73(3), pages 1417-1417, September.
    12. Raphael Herding & Lars Mönch, 2024. "A rolling horizon planning approach for short-term demand supply matching," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(3), pages 865-896, September.
    13. Matsuo, Hirofumi, 2015. "Implications of the Tohoku earthquake for Toyota׳s coordination mechanism: Supply chain disruption of automotive semiconductors," International Journal of Production Economics, Elsevier, vol. 161(C), pages 217-227.
    14. Yu, Wantao & Jacobs, Mark A. & Chavez, Roberto & Yang, Jiehui, 2019. "Dynamism, disruption orientation, and resilience in the supply chain and the impacts on financial performance: A dynamic capabilities perspective," International Journal of Production Economics, Elsevier, vol. 218(C), pages 352-362.
    15. Meixell, Mary J. & Gargeya, Vidyaranya B., 2005. "Global supply chain design: A literature review and critique," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(6), pages 531-550, November.
    16. Seyed Mohammad Gholami-Zanjani & Mohammad Saeed Jabalameli & Walid Klibi & Mir Saman Pishvaee, 2021. "A robust location-inventory model for food supply chains operating under disruptions with ripple effects," International Journal of Production Research, Taylor & Francis Journals, vol. 59(1), pages 301-324, January.
    17. Tadeusz Sawik, 2020. "A two-period model for selection of resilient multi-tier supply portfolio," International Journal of Production Research, Taylor & Francis Journals, vol. 58(19), pages 6043-6060, October.
    18. Komeyl Baghizadeh & Julia Pahl & Guiping Hu, 2021. "Closed-Loop Supply Chain Design with Sustainability Aspects and Network Resilience under Uncertainty: Modelling and Application," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-23, September.
    19. Christopher M. Durugbo & Zainab Al-Balushi, 2023. "Supply chain management in times of crisis: a systematic review," Management Review Quarterly, Springer, vol. 73(3), pages 1179-1235, September.
    20. Yu Han & Woon Kian Chong & Dong Li, 2020. "A systematic literature review of the capabilities and performance metrics of supply chain resilience," International Journal of Production Research, Taylor & Francis Journals, vol. 58(15), pages 4541-4566, July.
    21. Lutao Ning, 2008. "State-led Catching up Strategies and Inherited Conflicts in Developing the ICT Industry: Behind the US-East Asia Semiconductor Disputes," Global Economic Review, Taylor & Francis Journals, vol. 37(2), pages 265-292.
    22. Kevin P. Scheibe & Jennifer Blackhurst, 2018. "Supply chain disruption propagation: a systemic risk and normal accident theory perspective," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 43-59, January.
    23. Fleischmann, Moritz & Bloemhof-Ruwaard, Jacqueline M. & Dekker, Rommert & van der Laan, Erwin & van Nunen, Jo A. E. E. & Van Wassenhove, Luk N., 1997. "Quantitative models for reverse logistics: A review," European Journal of Operational Research, Elsevier, vol. 103(1), pages 1-17, November.
    24. Dmitry Ivanov & Alexandre Dolgui, 2022. "The shortage economy and its implications for supply chain and operations management," International Journal of Production Research, Taylor & Francis Journals, vol. 60(24), pages 7141-7154, December.
    25. Gholami-Zanjani, Seyed Mohammad & Klibi, Walid & Jabalameli, Mohammad Saeed & Pishvaee, Mir Saman, 2021. "The design of resilient food supply chain networks prone to epidemic disruptions," International Journal of Production Economics, Elsevier, vol. 233(C).
    26. Kosmas Alexopoulos & Ioannis Anagiannis & Nikolaos Nikolakis & George Chryssolouris, 2022. "A quantitative approach to resilience in manufacturing systems," International Journal of Production Research, Taylor & Francis Journals, vol. 60(24), pages 7178-7193, December.
    27. Merzifonluoglu, Yasemin, 2015. "Risk averse supply portfolio selection with supply, demand and spot market volatility," Omega, Elsevier, vol. 57(PA), pages 40-53.
    28. Alok Baveja & Ajai Kapoor & Benjamin Melamed, 2020. "Stopping Covid-19: A pandemic-management service value chain approach," Annals of Operations Research, Springer, vol. 289(2), pages 173-184, June.
    29. Wang, H.S., 2009. "A two-phase ant colony algorithm for multi-echelon defective supply chain network design," European Journal of Operational Research, Elsevier, vol. 192(1), pages 243-252, January.
    30. David Simchi-Levi & William Schmidt & Yehua Wei & Peter Yun Zhang & Keith Combs & Yao Ge & Oleg Gusikhin & Michael Sanders & Don Zhang, 2015. "Identifying Risks and Mitigating Disruptions in the Automotive Supply Chain," Interfaces, INFORMS, vol. 45(5), pages 375-390, October.
    31. Sawik, Tadeusz, 2019. "Disruption mitigation and recovery in supply chains using portfolio approach," Omega, Elsevier, vol. 84(C), pages 232-248.
    32. Behzadi, Golnar & O’Sullivan, Michael Justin & Olsen, Tava Lennon, 2020. "On metrics for supply chain resilience," European Journal of Operational Research, Elsevier, vol. 287(1), pages 145-158.
    33. Hosseini, Seyedmohsen & Morshedlou, Nazanin & Ivanov, Dmitry & Sarder, M.D. & Barker, Kash & Khaled, Abdullah Al, 2019. "Resilient supplier selection and optimal order allocation under disruption risks," International Journal of Production Economics, Elsevier, vol. 213(C), pages 124-137.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry, 2023. "Efficient resilience portfolio design in the supply chain with consideration of preparedness and recovery investments," Omega, Elsevier, vol. 117(C).
    2. Sawik, Tadeusz, 2022. "Stochastic optimization of supply chain resilience under ripple effect: A COVID-19 pandemic related study," Omega, Elsevier, vol. 109(C).
    3. Farahani, Reza Zanjirani & Rezapour, Shabnam & Drezner, Tammy & Fallah, Samira, 2014. "Competitive supply chain network design: An overview of classifications, models, solution techniques and applications," Omega, Elsevier, vol. 45(C), pages 92-118.
    4. Sawik, Tadeusz, 2021. "On the risk-averse selection of resilient multi-tier supply portfolio," Omega, Elsevier, vol. 101(C).
    5. Hu, Man & Liu, Xue-Xin & Jia, Fu, 2024. "Optimal Emergency Order Policy for Supply Disruptions in the Semiconductor Industry," International Journal of Production Economics, Elsevier, vol. 272(C).
    6. Aghajani, Mojtaba & Ali Torabi, S. & Altay, Nezih, 2023. "Resilient relief supply planning using an integrated procurement-warehousing model under supply disruption," Omega, Elsevier, vol. 118(C).
    7. Zhang, Mengdi & Yang, Wanting & Zhao, Zhiheng & Wang, Shuaian & Huang, George Q., 2024. "Do fairness concerns matter for ESG decision-making? Strategic interactions in digital twin-enabled sustainable semiconductor supply chain," International Journal of Production Economics, Elsevier, vol. 276(C).
    8. Hasani, Aliakbar & Khosrojerdi, Amirhossein, 2016. "Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 20-52.
    9. Papanagnou, Christos & Seiler, Andreas & Spanaki, Konstantina & Papadopoulos, Thanos & Bourlakis, Michael, 2022. "Data-driven digital transformation for emergency situations: The case of the UK retail sector," International Journal of Production Economics, Elsevier, vol. 250(C).
    10. Liu, Ming & Ding, Yueyu & Chu, Feng & Dolgui, Alexandre & Zheng, Feifeng, 2024. "Robust actions for improving supply chain resilience and viability," Omega, Elsevier, vol. 123(C).
    11. Seyedmohsen Hosseini & Dmitry Ivanov, 2022. "A new resilience measure for supply networks with the ripple effect considerations: a Bayesian network approach," Annals of Operations Research, Springer, vol. 319(1), pages 581-607, December.
    12. Abdolreza Roshani & Philip Walker-Davies & Glenn Parry, 2024. "Designing resilient supply chain networks: a systematic literature review of mitigation strategies," Annals of Operations Research, Springer, vol. 341(2), pages 1267-1332, October.
    13. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    14. Khadija Echefaj & Abdelkabir Charkaoui & Anass Cherrafi & Dmitry Ivanov, 2024. "Design of resilient and viable sourcing strategies in intertwined circular supply networks," Annals of Operations Research, Springer, vol. 337(1), pages 459-498, June.
    15. Kanokporn Kungwalsong & Abraham Mendoza & Vasanth Kamath & Subramanian Pazhani & Jose Antonio Marmolejo-Saucedo, 2022. "An application of interactive fuzzy optimization model for redesigning supply chain for resilience," Annals of Operations Research, Springer, vol. 315(2), pages 1803-1839, August.
    16. Demeter, Krisztina & Szász, Levente & Kő, Andrea, 2019. "A text mining based overview of inventory research in the ISIR special issues 1994–2016," International Journal of Production Economics, Elsevier, vol. 209(C), pages 134-146.
    17. H K Smith & G Laporte & P R Harper, 2009. "Locational analysis: highlights of growth to maturity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 140-148, May.
    18. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    19. Moritz Julius Ziegler & Kilian Seifried & Philipp Kuske & Moritz Fleischmann, 2019. "TRUMPF Uses a Mixed Integer Model as Decision Support for Strategic Production Network Design," Interfaces, INFORMS, vol. 49(3), pages 213-226, May.
    20. Zhao, Nanyang & Hong, Jiangtao & Lau, Kwok Hung, 2023. "Impact of supply chain digitalization on supply chain resilience and performance: A multi-mediation model," International Journal of Production Economics, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:276:y:2024:i:c:s0925527324002330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.