IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v275y2024ics0925527324002007.html
   My bibliography  Save this article

Optimised break scheduling vs. rest breaks in collective agreements under fatigue and non preemption

Author

Listed:
  • Jeunet, Jully
  • Salassa, Fabio

Abstract

Collective agreements provide all workers with identical break schedules, irrespective of their individual differences in susceptibility to fatigue and recovery speed. In addition, companies tend to limit breaks which is also detrimental to productivity. We consider workers performing a repetitive task, each endowed with an individual fatigue and recovery function. Fatigue slows down the unit processing time which can be restored by appropriate breaks, therefore allowing for the daily production amount to be optimised. The optimised production of each worker can actually be reached for a multitude of break schedules. We therefore develop an algorithm that lists all possible break schedules (enumeration), and selects those leading to the maximum daily output, and the maximum welfare. Welfare is defined by the break duration and their timing flexibility, since we allow breaks to be also taken at the beginning or end of the workday, enabling workers to spend less time in the workplace. Having a variety of schedules would help in meeting at best the workers’ preferences and facilitate a consensus on a specific schedule between managers and workers. The resulting optimised break schedules are compared with common break practices in collective agreements so as to assess their impact on productivity and on worker’s welfare. None of the break scheduling models in the literature considers the option of leaving the workplace earlier, which is nevertheless highly appreciated by workers, nor do these models provide a variety of optimised break schedules to best accommodate workers’ preferences.

Suggested Citation

  • Jeunet, Jully & Salassa, Fabio, 2024. "Optimised break scheduling vs. rest breaks in collective agreements under fatigue and non preemption," International Journal of Production Economics, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:proeco:v:275:y:2024:i:c:s0925527324002007
    DOI: 10.1016/j.ijpe.2024.109343
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527324002007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2024.109343?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Shuling & Hall, Nicholas G., 2021. "Fatigue, personnel scheduling and operations: Review and research opportunities," European Journal of Operational Research, Elsevier, vol. 295(3), pages 807-822.
    2. Kai Li & Shuling Xu & Hong Fu, 2020. "Work-break scheduling with real-time fatigue effect and recovery," International Journal of Production Research, Taylor & Francis Journals, vol. 58(3), pages 689-702, February.
    3. Manel Baucells & Lin Zhao, 2019. "It Is Time to Get Some Rest," Management Science, INFORMS, vol. 65(4), pages 1717-1734, April.
    4. Berti, Nicola & Finco, Serena & Battaïa, Olga & Delorme, Xavier, 2021. "Ageing workforce effects in Dual-Resource Constrained job-shop scheduling," International Journal of Production Economics, Elsevier, vol. 237(C).
    5. Elin Svarstad & Fredrik B. Kostøl, 2022. "Unions, collective agreements and productivity: A firm‐level analysis using Norwegian matched employer–employee panel data," British Journal of Industrial Relations, London School of Economics, vol. 60(4), pages 864-894, December.
    6. Stephen E. Bechtold & Ralph E. Janaro & De Witt L. Sumners, 1984. "Maximization of Labor Productivity Through Optimal Rest-Break Schedules," Management Science, INFORMS, vol. 30(12), pages 1442-1458, December.
    7. Glock, C. H. & Grosse, E. H. & Kim, T. & Neumann, W. P. & Sobhani, A., 2019. "An integrated cost and worker fatigue evaluation model of a packaging process," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 107269, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    8. Mohammed-Amine Abdous & Xavier Delorme & Daria Battini & Fabio Sgarbossa & Sandrine Berger-Douce, 2023. "Assembly line balancing problem with ergonomics: a new fatigue and recovery model," International Journal of Production Research, Taylor & Francis Journals, vol. 61(3), pages 693-706, February.
    9. Battini, Daria & Berti, Nicola & Finco, Serena & Zennaro, Ilenia & Das, Ajay, 2022. "Towards industry 5.0: A multi-objective job rotation model for an inclusive workforce," International Journal of Production Economics, Elsevier, vol. 250(C).
    10. Jully Jeunet & Fabio Salassa, 2023. "The discrete time break scheduling problem under fatigue and no preemption: solution methods and impact of work regulations," International Journal of Production Research, Taylor & Francis Journals, vol. 61(16), pages 5372-5391, August.
    11. Lodree Jr., Emmett J. & Geiger, Christopher D., 2010. "A note on the optimal sequence position for a rate-modifying activity under simple linear deterioration," European Journal of Operational Research, Elsevier, vol. 201(2), pages 644-648, March.
    12. Zhanguo Zhu & Feifeng Zheng & Chengbin Chu, 2017. "Multitasking scheduling problems with a rate-modifying activity," International Journal of Production Research, Taylor & Francis Journals, vol. 55(1), pages 296-312, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Shuling & Hall, Nicholas G., 2021. "Fatigue, personnel scheduling and operations: Review and research opportunities," European Journal of Operational Research, Elsevier, vol. 295(3), pages 807-822.
    2. Xinyu Sun & Tao Liu & Xin-Na Geng & Yang Hu & Jing-Xiao Xu, 2023. "Optimization of scheduling problems with deterioration effects and an optional maintenance activity," Journal of Scheduling, Springer, vol. 26(3), pages 251-266, June.
    3. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    4. Bouaziz, Nourddine & Bettayeb, Belgacem & Sahnoun, M’hammed & Yassine, Adnan, 2024. "Incorporating uncertain human behavior in production scheduling for enhanced productivity in Industry 5.0 context," International Journal of Production Economics, Elsevier, vol. 274(C).
    5. Ranasinghe, Thilini & Senanayake, Chanaka D. & Grosse, Eric H., 2024. "Effects of stochastic and heterogeneous worker learning on the performance of a two-workstation production system," International Journal of Production Economics, Elsevier, vol. 267(C).
    6. Sheng Yu, 2015. "An optimal single-machine scheduling with linear deterioration rate and rate-modifying activities," Journal of Combinatorial Optimization, Springer, vol. 30(2), pages 242-252, August.
    7. Severino, Gonzalo & Rivera, José & Parot, Roberto & Otaegui, Ernesto & Fuentes, Andrés & Reszka, Pedro, 2024. "Workforce and task optimization to guarantee oxygen bottling under a COVID-19 pandemic scenario: A Chilean case study," International Journal of Production Economics, Elsevier, vol. 271(C).
    8. Jiuh‐Biing Sheu & Tsan‐Ming Choi, 2023. "Can we work more safely and healthily with robot partners? A human‐friendly robot–human‐coordinated order fulfillment scheme," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 794-812, March.
    9. He, Qiao & Cheng, Yan & Yuan, Tinggang & Xu, Peng & Shang, Wei & Li, Houling & Yi, Qing, 2024. "Modeling and analysis of optimizing the sport performance of elite women's 20 KM race walking," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    10. Mukherjee, Abheek Anjan & Raj, Alok & Aggarwal, Shikha, 2023. "Identification of barriers and their mitigation strategies for industry 5.0 implementation in emerging economies," International Journal of Production Economics, Elsevier, vol. 257(C).
    11. Meherishi, Lavanya & Narayana, Sushmita A. & Ranjani, K.S., 2021. "Integrated product and packaging decisions with secondary packaging returns and protective packaging management," European Journal of Operational Research, Elsevier, vol. 292(3), pages 930-952.
    12. Mor, Baruch & Mosheiov, Gur, 2014. "Batch scheduling with a rate-modifying maintenance activity to minimize total flowtime," International Journal of Production Economics, Elsevier, vol. 153(C), pages 238-242.
    13. Ravi Shankar & Laxmi Gupta, 2024. "Modelling risks in transition from Industry 4.0 to Industry 5.0," Annals of Operations Research, Springer, vol. 342(2), pages 1275-1320, November.
    14. Setareh Boshrouei Shargh & Mostafa Zandieh & Ashkan Ayough & Farbod Farhadi, 2024. "Scheduling in services: a review and bibliometric analysis," Operations Management Research, Springer, vol. 17(2), pages 754-783, June.
    15. S Gawiejnowicz & W-C Lee & C-L Lin & C-C Wu, 2011. "Single-machine scheduling of proportionally deteriorating jobs by two agents," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 1983-1991, November.
    16. Yang, Suh-Jenq & Yang, Dar-Li, 2010. "Minimizing the makespan on single-machine scheduling with aging effect and variable maintenance activities," Omega, Elsevier, vol. 38(6), pages 528-533, December.
    17. Ruipu Dong & Jinghua Li & Dening Song & Boxin Yang & Lei Zhou, 2024. "A Multi-Objective Non-Dominated Sorting Gravitational Search Algorithm for Assembly Flow-Shop Scheduling of Marine Prefabricated Cabins," Mathematics, MDPI, vol. 12(14), pages 1-32, July.
    18. Svend Erik Mathiassen & David M Hallman & Eugene Lyskov & Staffan Hygge, 2014. "Can Cognitive Activities during Breaks in Repetitive Manual Work Accelerate Recovery from Fatigue? A Controlled Experiment," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-11, November.
    19. Hui Zhu & Min Li & Zhangjin Zhou & Yun You, 2016. "Due-window assignment and scheduling with general position-dependent processing times involving a deteriorating and compressible maintenance activity," International Journal of Production Research, Taylor & Francis Journals, vol. 54(12), pages 3475-3490, June.
    20. Janiak, Adam & Kovalyov, Mikhail Y., 2006. "Scheduling in a contaminated area: A model and polynomial algorithms," European Journal of Operational Research, Elsevier, vol. 173(1), pages 125-132, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:275:y:2024:i:c:s0925527324002007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.