IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v161y2022ics1366554522001077.html
   My bibliography  Save this article

Parcel delivery using the hyperconnected service network

Author

Listed:
  • Orenstein, Ido
  • Raviv, Tal

Abstract

The small parcel delivery industry is experiencing rapid growth, primarily driven by the growth of the e-commerce sector. We introduce a logistic model for delivering parcels to service points that are used as drop-off, pickup, and intermediate storage locations. A parcel may be carried from its origin to its destination in several legs via several possible intermediate service points. Such a system constitutes a hyperconnected service network (HCSN). The HCSN is a generalization of the current practice of using a hierarchical, tree-like service network (TLSN), where a parcel can switch vehicles only in a large sorting facility (hub) and a service point is served by a single route. The HCSN topology presents an opportunity to improve the delivery process by reducing the total distance that parcels are carried while still exploiting the possibility of shipment consolidation. In addition, such a system may save resources that are associated (and tied for an extended period) with the construction and operation of a large sorting facility. In this paper, we develop tools to design and operate a successful HCSN for parcel delivery – a parcel routing mechanism and a math heuristic for routing and scheduling of the vehicles that transfer the parcels in the network. The effectiveness of the proposed tools and the advantages of the HCSN are demonstrated by a simulation study.

Suggested Citation

  • Orenstein, Ido & Raviv, Tal, 2022. "Parcel delivery using the hyperconnected service network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:transe:v:161:y:2022:i:c:s1366554522001077
    DOI: 10.1016/j.tre.2022.102716
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554522001077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2022.102716?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dumas, Yvan & Desrosiers, Jacques & Soumis, Francois, 1991. "The pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 54(1), pages 7-22, September.
    2. Belieres, Simon & Hewitt, Mike & Jozefowiez, Nicolas & Semet, Frédéric & Van Woensel, Tom, 2020. "A Benders decomposition-based approach for logistics service network design," European Journal of Operational Research, Elsevier, vol. 286(2), pages 523-537.
    3. Hunkar Toyoglu & Oya Karasan & Bahar Kara, 2012. "A New Formulation Approach for Location-Routing Problems," Networks and Spatial Economics, Springer, vol. 12(4), pages 635-659, December.
    4. Crainic, Teodor G. & Rousseau, Jean-Marc, 1986. "Multicommodity, multimode freight transportation: A general modeling and algorithmic framework for the service network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 20(3), pages 225-242, June.
    5. H.L.M. Kerivin & M. Lacroix & A.R. Mahjoub & A. Quilliot, 2008. "The splittable pickup and delivery problem with reloads," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 2(2), pages 112-133.
    6. Chao Chen & Shenle Pan & Zhu Wang & Ray Y. Zhong, 2017. "Using taxis to collect citywide E-commerce reverse flows: a crowdsourcing solution," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 1833-1844, April.
    7. Rochdi Sarraj & Eric Ballot & Shenle Pan & Driss Hakimi & Benoit Montreuil, 2014. "Interconnected logistic networks and protocols: simulation-based efficiency assessment," Post-Print hal-01112138, HAL.
    8. Chao Chen & Shenle Pan & Zhu Wang & Ray Y. Zhong, 2017. "Using taxis to collect citywide E-commerce reverse flows: a crowdsourcing solution," Post-Print hal-01300487, HAL.
    9. Mor Kaspi & Tal Raviv, 2013. "Service-Oriented Line Planning and Timetabling for Passenger Trains," Transportation Science, INFORMS, vol. 47(3), pages 295-311, August.
    10. Perboli, Guido & Brotcorne, Luce & Bruni, Maria Elena & Rosano, Mariangela, 2021. "A new model for Last-Mile Delivery and Satellite Depots management: The impact of the on-demand economy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    11. Grunert, Tore & Sebastian, Hans-Jurgen, 2000. "Planning models for long-haul operations of postal and express shipment companies," European Journal of Operational Research, Elsevier, vol. 122(2), pages 289-309, April.
    12. Ido Orenstein & Tal Raviv & Elad Sadan, 2019. "Flexible parcel delivery to automated parcel lockers: models, solution methods and analysis," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 683-711, December.
    13. Mehran Fazili & Uday Venkatadri & Pemberton Cyrus & Mahdi Tajbakhsh, 2017. "Physical Internet, conventional and hybrid logistic systems: a routing optimisation-based comparison using the Eastern Canada road network case study," International Journal of Production Research, Taylor & Francis Journals, vol. 55(9), pages 2703-2730, May.
    14. Imen Ben Mohamed & Walid Klibi & Olivier Labarthe & Jean-Christophe Deschamps & Mohamed Zied Babai, 2017. "Modelling and solution approaches for the interconnected city logistics," International Journal of Production Research, Taylor & Francis Journals, vol. 55(9), pages 2664-2684, May.
    15. Alumur, Sibel & Kara, Bahar Y., 2008. "Network hub location problems: The state of the art," European Journal of Operational Research, Elsevier, vol. 190(1), pages 1-21, October.
    16. Berbeglia, Gerardo & Cordeau, Jean-François & Laporte, Gilbert, 2010. "Dynamic pickup and delivery problems," European Journal of Operational Research, Elsevier, vol. 202(1), pages 8-15, April.
    17. Wasner, Michael & Zapfel, Gunther, 2004. "An integrated multi-depot hub-location vehicle routing model for network planning of parcel service," International Journal of Production Economics, Elsevier, vol. 90(3), pages 403-419, August.
    18. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    19. Campbell, James F., 1994. "Integer programming formulations of discrete hub location problems," European Journal of Operational Research, Elsevier, vol. 72(2), pages 387-405, January.
    20. Selim Çetiner & Canan Sepil & Haldun Süral, 2010. "Hubbing and routing in postal delivery systems," Annals of Operations Research, Springer, vol. 181(1), pages 109-124, December.
    21. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
    22. Raphaël Oger & Benoit Montreuil & Matthieu Lauras & Frederick Benaben, 2018. "Towards Hyperconnected Supply Chain Capability Planning: Conceptual Framework Proposal," Post-Print hal-01875900, HAL.
    23. Yael Deutsch & Boaz Golany, 2018. "The effect of risk aversion on the outcomes of inspection games," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(5), pages 645-660, May.
    24. Kim, Nayeon & Montreuil, Benoit & Klibi, Walid & Kholgade, Nitish, 2021. "Hyperconnected urban fulfillment and delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    25. M. W. P. Savelsbergh & M. Sol, 1995. "The General Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 29(1), pages 17-29, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eskandarzadeh, Saman & Fahimnia, Behnam, 2024. "Containerised parcel delivery: Modelling and performance evaluation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    2. Sara Kaboudvand & Benoit Montreuil, 2024. "Simulation-Based Assessment of Hyperconnected Megacity Parcel Logistics," Logistics, MDPI, vol. 8(3), pages 1-32, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Capelle, Thomas & Cortés, Cristián E. & Gendreau, Michel & Rey, Pablo A. & Rousseau, Louis-Martin, 2019. "A column generation approach for location-routing problems with pickup and delivery," European Journal of Operational Research, Elsevier, vol. 272(1), pages 121-131.
    2. Faugère, Louis & Klibi, Walid & White, Chelsea & Montreuil, Benoit, 2022. "Dynamic pooled capacity deployment for urban parcel logistics," European Journal of Operational Research, Elsevier, vol. 303(2), pages 650-667.
    3. Jansen, Benjamin & Swinkels, Pieter C. J. & Teeuwen, Geert J. A. & van Antwerpen de Fluiter, Babette & Fleuren, Hein A., 2004. "Operational planning of a large-scale multi-modal transportation system," European Journal of Operational Research, Elsevier, vol. 156(1), pages 41-53, July.
    4. Morton O’Kelly & Henrique Luna & Ricardo Camargo & Gilberto Miranda, 2015. "Hub Location Problems with Price Sensitive Demands," Networks and Spatial Economics, Springer, vol. 15(4), pages 917-945, December.
    5. Meuffels, W.J.M., 2015. "The design of road and air networks for express service providers," Other publications TiSEM d3266cb8-bc55-41be-adc7-4, Tilburg University, School of Economics and Management.
    6. Li, Ming & Shao, Saijun & Li, Yang & Zhang, Hua & Zhang, Nianwu & He, Yandong, 2022. "A Physical Internet (PI) based inland container transportation problem with selective non-containerized shipping requests," International Journal of Production Economics, Elsevier, vol. 245(C).
    7. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    8. Zühal Kartal & Mohan Krishnamoorthy & Andreas T. Ernst, 2019. "Heuristic algorithms for the single allocation p-hub center problem with routing considerations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 99-145, March.
    9. Sun, Li & Zhao, Lindu & Hou, Jing, 2015. "Optimization of postal express line network under mixed driving pattern of trucks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 147-169.
    10. Jansen, B. & Swinkels, P.C.J. & Teeuwen, G.J.A. & van Antwerpen-de Fluiter, B. & Fleuren, H.A., 2004. "Operational planning of a large-scale multi-modal transportation system," Other publications TiSEM ebdccccf-58bc-4ced-91e7-f, Tilburg University, School of Economics and Management.
    11. Guo, Chaojie & Thompson, Russell G. & Foliente, Greg & Kong, Xiang T.R., 2021. "An auction-enabled collaborative routing mechanism for omnichannel on-demand logistics through transshipment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    12. C S Sung & S H Song, 2003. "Integrated service network design for a cross-docking supply chain network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(12), pages 1283-1295, December.
    13. Andaryan, Abdullah Zareh & Mousighichi, Kasra & Ghaffarinasab, Nader, 2024. "A heuristic approach to the stochastic capacitated single allocation hub location problem with Bernoulli demands," European Journal of Operational Research, Elsevier, vol. 312(3), pages 954-968.
    14. Zheng, Jianfeng & Meng, Qiang & Sun, Zhuo, 2014. "Impact analysis of maritime cabotage legislations on liner hub-and-spoke shipping network design," European Journal of Operational Research, Elsevier, vol. 234(3), pages 874-884.
    15. Regnier-Coudert, Olivier & McCall, John & Ayodele, Mayowa & Anderson, Steven, 2016. "Truck and trailer scheduling in a real world, dynamic and heterogeneous context," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 389-408.
    16. Xin Wang & Teodor Gabriel Crainic & Stein W. Wallace, 2019. "Stochastic Network Design for Planning Scheduled Transportation Services: The Value of Deterministic Solutions," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 153-170, February.
    17. Nader Azizi & Navneet Vidyarthi & Satyaveer S. Chauhan, 2018. "Modelling and analysis of hub-and-spoke networks under stochastic demand and congestion," Annals of Operations Research, Springer, vol. 264(1), pages 1-40, May.
    18. Soylu, Banu & Katip, Hatice, 2019. "A multiobjective hub-airport location problem for an airline network design," European Journal of Operational Research, Elsevier, vol. 277(2), pages 412-425.
    19. Wang, Congke & Liu, Yankui & Yang, Guoqing, 2023. "Adaptive distributionally robust hub location and routing problem with a third-party logistics strategy," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    20. Shoufeng Ji & Pengyun Zhao & Tingting Ji, 2023. "A Hybrid Optimization Method for Sustainable and Flexible Design of Supply–Production–Distribution Network in the Physical Internet," Sustainability, MDPI, vol. 15(7), pages 1-34, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:161:y:2022:i:c:s1366554522001077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.