IDEAS home Printed from https://ideas.repec.org/a/eee/ininma/v38y2018i1p187-195.html
   My bibliography  Save this article

Big data technologies: An empirical investigation on their adoption, benefits and risks for companies

Author

Listed:
  • Raguseo, Elisabetta

Abstract

Companies currently have to deal with profound changes in the way they manage their business, their customers and their business models, since they are overrun by a data-driven revolution in management. This revolution is due to the wide availability of big data and the fast evolution of big data technologies. Big data is recognized as one of the most important areas of future technology, and is fast gaining the attention of many industries, since it can provide high value to companies. This article investigates the adoption levels of big data technologies in companies, and the big data sources used by them. This article also points out the most frequently recognized strategic, transactional, transformational and informational benefits and risks related to the usage of big data technologies by companies. In order to achieve these aims, the paper looks at the differences that exist among companies of different sizes, by comparing medium-sized and large companies, and the differences among companies of different industrial sectors. It provides evidence that only in a few cases these differences are significant. This study could serve as a reference for managers who wish to initiate an evaluation cycle on the adoption and usage of big data technologies.

Suggested Citation

  • Raguseo, Elisabetta, 2018. "Big data technologies: An empirical investigation on their adoption, benefits and risks for companies," International Journal of Information Management, Elsevier, vol. 38(1), pages 187-195.
  • Handle: RePEc:eee:ininma:v:38:y:2018:i:1:p:187-195
    DOI: 10.1016/j.ijinfomgt.2017.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0268401217300063
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijinfomgt.2017.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prasanna Tambe, 2014. "Big Data Investment, Skills, and Firm Value," Management Science, INFORMS, vol. 60(6), pages 1452-1469, June.
    2. Gandomi, Amir & Haider, Murtaza, 2015. "Beyond the hype: Big data concepts, methods, and analytics," International Journal of Information Management, Elsevier, vol. 35(2), pages 137-144.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chae, Bongsug (Kevin), 2019. "A General framework for studying the evolution of the digital innovation ecosystem: The case of big data," International Journal of Information Management, Elsevier, vol. 45(C), pages 83-94.
    2. Rodepeter, Elisa & Gschnaidtner, Christoph & Hottenrott, Hanna, 2024. "Big Data and Start-up Performance," VfS Annual Conference 2024 (Berlin): Upcoming Labor Market Challenges 302358, Verein für Socialpolitik / German Economic Association.
    3. Elisa Rodepeter & Christoph Gschnaidtner & Hanna Hottenrott, 2024. "Big Data and Start-up Performance," Working Papers 232, Bavarian Graduate Program in Economics (BGPE).
    4. Bram Klievink & Bart-Jan Romijn & Scott Cunningham & Hans Bruijn, 2017. "Big data in the public sector: Uncertainties and readiness," Information Systems Frontiers, Springer, vol. 19(2), pages 267-283, April.
    5. Claudio Vitari & Elisabetta Raguseo, 2016. "Big data value and financial performance: an empirical investigation [Digital data, dynamic capability and financial performance: an empirical investigation in the era of Big Data]," Post-Print halshs-01923271, HAL.
    6. Ahmad Ibrahim Aljumah & Mohammed T. Nuseir & Md. Mahmudul Alam, 2021. "Traditional marketing analytics, big data analytics and big data system quality and the success of new product development," Post-Print hal-03538161, HAL.
    7. Cano-Marin, Enrique & Mora-Cantallops, Marçal & Sánchez-Alonso, Salvador, 2023. "Twitter as a predictive system: A systematic literature review," Journal of Business Research, Elsevier, vol. 157(C).
    8. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    9. Bertschek, Irene & Kesler, Reinhold, 2022. "Let the user speak: Is feedback on Facebook a source of firms’ innovation?," Information Economics and Policy, Elsevier, vol. 60(C).
    10. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    11. Lutfi, Abdalwali & Alrawad, Mahmaod & Alsyouf, Adi & Almaiah, Mohammed Amin & Al-Khasawneh, Ahmad & Al-Khasawneh, Akif Lutfi & Alshira'h, Ahmad Farhan & Alshirah, Malek Hamed & Saad, Mohamed & Ibrahim, 2023. "Drivers and impact of big data analytic adoption in the retail industry: A quantitative investigation applying structural equation modeling," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).
    12. Yingjie Zhang & Beibei Li & Ramayya Krishnan, 2020. "Learning Individual Behavior Using Sensor Data: The Case of Global Positioning System Traces and Taxi Drivers," Information Systems Research, INFORMS, vol. 31(4), pages 1301-1321, December.
    13. Jörg Claussen & Christian Essling & Christian Peukert, 2018. "Demand variation, strategic flexibility and market entry: Evidence from the U.S. airline industry," Strategic Management Journal, Wiley Blackwell, vol. 39(11), pages 2877-2898, November.
    14. Kristina McElheran & J. Frank Li & Erik Brynjolfsson & Zachary Kroff & Emin Dinlersoz & Lucia Foster & Nikolas Zolas, 2024. "AI adoption in America: Who, what, and where," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 33(2), pages 375-415, March.
    15. Pan Liu & Shu-ping Yi, 2018. "Investment decision-making and coordination of a three-stage supply chain considering Data Company in the Big Data era," Annals of Operations Research, Springer, vol. 270(1), pages 255-271, November.
    16. Mohamed Gaber & Edward J. Lusk, 2019. "A Vetting Protocol for the Analytical Procedures Platform for the AP-Phase of PCAOB Audits," Accounting and Finance Research, Sciedu Press, vol. 8(4), pages 1-43, November.
    17. Acharya, Abhilash & Singh, Sanjay Kumar & Pereira, Vijay & Singh, Poonam, 2018. "Big data, knowledge co-creation and decision making in fashion industry," International Journal of Information Management, Elsevier, vol. 42(C), pages 90-101.
    18. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
    19. Erik Brynjolfsson & Wang Jin & Kristina McElheran, 2021. "The power of prediction: predictive analytics, workplace complements, and business performance," Business Economics, Palgrave Macmillan;National Association for Business Economics, vol. 56(4), pages 217-239, October.
    20. Liu, Weihua & Wang, Siyu & Lin, Yong & Xie, Dong & Zhang, Jiahui, 2020. "Effect of intelligent logistics policy on shareholder value: Evidence from Chinese logistics companies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ininma:v:38:y:2018:i:1:p:187-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-information-management .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.