IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v236y2021ics0925527321000906.html
   My bibliography  Save this article

Machine learning-based predictive maintenance: A cost-oriented model for implementation

Author

Listed:
  • Florian, Eleonora
  • Sgarbossa, Fabio
  • Zennaro, Ilenia

Abstract

Predictive Maintenance (PdM) is a condition-based maintenance strategy (CBM) that carries out maintenance action when needed, avoiding unnecessary preventive actions or failures. Machine learning (ML), in the form of advanced monitoring and diagnosis technologies, has become increasingly attractive. Implementing ML-based PdM is a difficult and expensive process, especially for those companies which often lack the necessary skills and financial and labour resources. Thus, a cost-oriented analysis is required to define when ML-based PdM is the most suitable maintenance strategy. The implementation of this strategy involves investment costs in IT technologies, in addition to costs incurred from traditional maintenance activities depending of the performance of the ML model classifier; however, no previous research consider both costs in the economic evaluation of PdM.This paper aims to provide a mathematical model where investment costs are included and the ML performance is evaluated in terms of the probability to correctly intercept faults. A error matrix is used to quantify costs due to maintenance actions. Moreover, the mathematical model provides a cost-based quantitative method, based on the Receiver Operating Characteristics (ROC) curve. This optimizes the decision threshold of the ML model classifier, which allows the maintenance costs to be minimized in comparison to traditional decision threshold optimisation methods. Based on the mathematical model, a useful Decision Support System (DSS) that guides PdM implementation is introduced. Finally, the DSS is applied to a real case study to illustrate its applicability.

Suggested Citation

  • Florian, Eleonora & Sgarbossa, Fabio & Zennaro, Ilenia, 2021. "Machine learning-based predictive maintenance: A cost-oriented model for implementation," International Journal of Production Economics, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:proeco:v:236:y:2021:i:c:s0925527321000906
    DOI: 10.1016/j.ijpe.2021.108114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527321000906
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2021.108114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takaya Saito & Marc Rehmsmeier, 2015. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    2. Gregory W. Vogl & Brian A. Weiss & Moneer Helu, 2019. "A review of diagnostic and prognostic capabilities and best practices for manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 79-95, January.
    3. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    4. Sheu, Shey-Huei & Chang, Chin-Chih & Chen, Yen-Luan & George Zhang, Zhe, 2015. "Optimal preventive maintenance and repair policies for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 78-87.
    5. Waeyenbergh, Geert & Pintelon, Liliane, 2002. "A framework for maintenance concept development," International Journal of Production Economics, Elsevier, vol. 77(3), pages 299-313, June.
    6. Yi Yang & John Dalsgaard Sørensen, 2019. "Cost-Optimal Maintenance Planning for Defects on Wind Turbine Blades," Energies, MDPI, vol. 12(6), pages 1-16, March.
    7. Alexandros Bousdekis & Babis Magoutas & Dimitris Apostolou & Gregoris Mentzas, 2018. "Review, analysis and synthesis of prognostic-based decision support methods for condition based maintenance," Journal of Intelligent Manufacturing, Springer, vol. 29(6), pages 1303-1316, August.
    8. Tian, Zhigang & Liao, Haitao, 2011. "Condition based maintenance optimization for multi-component systems using proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 581-589.
    9. Zhou, Xiaojun & Xi, Lifeng & Lee, Jay, 2007. "Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation," Reliability Engineering and System Safety, Elsevier, vol. 92(4), pages 530-534.
    10. Liao, Haitao & Elsayed, Elsayed A. & Chan, Ling-Yau, 2006. "Maintenance of continuously monitored degrading systems," European Journal of Operational Research, Elsevier, vol. 175(2), pages 821-835, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akcay, Alp, 2022. "An alert-assisted inspection policy for a production process with imperfect condition signals," European Journal of Operational Research, Elsevier, vol. 298(2), pages 510-525.
    2. Fosso Wamba, Samuel & Queiroz, Maciel M. & Trinchera, Laura, 2024. "The role of artificial intelligence-enabled dynamic capability on environmental performance: The mediation effect of a data-driven culture in France and the USA," International Journal of Production Economics, Elsevier, vol. 268(C).
    3. Leoni, Leonardo & De Carlo, Filippo & Tucci, Mario, 2023. "Developing a framework for generating production-dependent failure rate through discrete-event simulation," International Journal of Production Economics, Elsevier, vol. 266(C).
    4. Alberto Postiglione & Mario Monteleone, 2024. "Predictive Maintenance with Linguistic Text Mining," Mathematics, MDPI, vol. 12(7), pages 1-18, April.
    5. Maryna Garan & Khaoula Tidriri & Iaroslav Kovalenko, 2022. "A Data-Centric Machine Learning Methodology: Application on Predictive Maintenance of Wind Turbines," Energies, MDPI, vol. 15(3), pages 1-21, January.
    6. Bokrantz, Jon & Skoogh, Anders, 2023. "Adoption patterns and performance implications of Smart Maintenance," International Journal of Production Economics, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    2. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    3. Shi, Yue & Zhu, Weihang & Xiang, Yisha & Feng, Qianmei, 2020. "Condition-based maintenance optimization for multi-component systems subject to a system reliability requirement," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    4. Jingyi Zhao & Chunhai Gao & Tao Tang, 2022. "A Review of Sustainable Maintenance Strategies for Single Component and Multicomponent Equipment," Sustainability, MDPI, vol. 14(5), pages 1-22, March.
    5. Lin, Zu-Liang & Huang, Yeu-Shiang & Fang, Chih-Chiang, 2015. "Non-periodic preventive maintenance with reliability thresholds for complex repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 145-156.
    6. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    7. Zhu, Qiushi & Peng, Hao & Timmermans, Bas & van Houtum, Geert-Jan, 2017. "A condition-based maintenance model for a single component in a system with scheduled and unscheduled downs," International Journal of Production Economics, Elsevier, vol. 193(C), pages 365-380.
    8. Song, Sanling & Coit, David W. & Feng, Qianmei, 2014. "Reliability for systems of degrading components with distinct component shock sets," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 115-124.
    9. He, Rui & Tian, Zhigang & Wang, Yifei & Zuo, Mingjian & Guo, Ziwei, 2023. "Condition-based maintenance optimization for multi-component systems considering prognostic information and degraded working efficiency," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Peng, Hao & van Houtum, Geert-Jan, 2016. "Joint optimization of condition-based maintenance and production lot-sizing," European Journal of Operational Research, Elsevier, vol. 253(1), pages 94-107.
    11. Oakley, Jordan L. & Wilson, Kevin J. & Philipson, Pete, 2022. "A condition-based maintenance policy for continuously monitored multi-component systems with economic and stochastic dependence," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    12. Jiawen Hu & Zuhua Jiang & Haitao Liao, 2017. "Preventive maintenance of a batch production system under time-varying operational condition," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5681-5705, October.
    13. Lee, Juseong & Mitici, Mihaela, 2020. "An integrated assessment of safety and efficiency of aircraft maintenance strategies using agent-based modelling and stochastic Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    14. Deng, Yingjun & Bucchianico, Alessandro Di & Pechenizkiy, Mykola, 2020. "Controlling the accuracy and uncertainty trade-off in RUL prediction with a surrogate Wiener propagation model," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    15. Zhang, Nailong & Si, Wujun, 2020. "Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    16. Yousefi, Nooshin & Coit, David W. & Song, Sanling & Feng, Qianmei, 2019. "Optimization of on-condition thresholds for a system of degrading components with competing dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    17. Xiaosheng Zhang & Jianqiao Chen & Ben Han & Junxiang Li, 2019. "Multi-mission selective maintenance modelling for multistate systems over a finite time horizon," Journal of Risk and Reliability, , vol. 233(6), pages 1040-1059, December.
    18. Wang, Ling & Chu, Jian & Mao, Weijie, 2009. "A condition-based replacement and spare provisioning policy for deteriorating systems with uncertain deterioration to failure," European Journal of Operational Research, Elsevier, vol. 194(1), pages 184-205, April.
    19. Fan, Yuantao & Nowaczyk, Sławomir & Rögnvaldsson, Thorsteinn, 2020. "Transfer learning for remaining useful life prediction based on consensus self-organizing models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    20. Zhao, Xufeng & Qian, Cunhua & Nakagawa, Toshio, 2017. "Comparisons of replacement policies with periodic times and repair numbers," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 161-170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:236:y:2021:i:c:s0925527321000906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.