IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v228y2020ics0925527320300463.html
   My bibliography  Save this article

Resource allocation models for material convergence

Author

Listed:
  • Ozen, Merve
  • Krishnamurthy, Ananth

Abstract

Immediately after a major disaster large volumes of solicited and unsolicited relief items start to flow into the disaster affected region. This phenomenon is known as material convergence. The sheer volume of incoming materials, coupled with limited resources, make sorting and distribution of relief items a difficult task. The challenge is exacerbated when a large portion of the unsolicited donations are low-priority or inappropriate items, diverting volunteer, space, and transportation capacity from more critical items. This paper investigates volunteer allocation decisions under material convergence and varying levels of high-priority donations. First, we interview disaster response practitioners to understand challenges with resource allocation decisions. Then, we model the donation arrival and sorting process for both solicited and unsolicited donations as transient multi-server queues. Using this model, we quantify the level of material convergence and evaluate the impact of resource allocation decisions on relief item output. We provide insights that can help address the problems of resource allocation under material convergence, that are critical to satisfy needs of disaster victims.

Suggested Citation

  • Ozen, Merve & Krishnamurthy, Ananth, 2020. "Resource allocation models for material convergence," International Journal of Production Economics, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:proeco:v:228:y:2020:i:c:s0925527320300463
    DOI: 10.1016/j.ijpe.2020.107646
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527320300463
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2020.107646?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodríguez-Espíndola, Oscar & Albores, Pavel & Brewster, Christopher, 2018. "Dynamic formulation for humanitarian response operations incorporating multiple organisations," International Journal of Production Economics, Elsevier, vol. 204(C), pages 83-98.
    2. M. Ülkü & Kathryn Bell & Stephanie Wilson, 2015. "Modeling the impact of donor behavior on humanitarian aid operations," Annals of Operations Research, Springer, vol. 230(1), pages 153-168, July.
    3. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    4. Donald Gross & Douglas R. Miller, 1984. "The Randomization Technique as a Modeling Tool and Solution Procedure for Transient Markov Processes," Operations Research, INFORMS, vol. 32(2), pages 343-361, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Linda & Firouz, Mohammad & Ahmed, Abdulaziz & Delen, Dursun, 2023. "On the Egalitarian–Utilitarian spectrum in stochastic capacitated resource allocation problems," International Journal of Production Economics, Elsevier, vol. 262(C).
    2. Wang, Haibo & Alidaee, Bahram, 2023. "White-glove service delivery: A quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    3. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    4. Alegoz, Mehmet & Acar, Muge & Salman, F. Sibel, 2024. "Value of sorting and recovery in post-disaster relief aid distribution," Omega, Elsevier, vol. 122(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    2. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    3. Nagurney, Anna & Salarpour, Mojtaba & Daniele, Patrizia, 2019. "An integrated financial and logistical game theory model for humanitarian organizations with purchasing costs, multiple freight service providers, and budget, capacity, and demand constraints," International Journal of Production Economics, Elsevier, vol. 212(C), pages 212-226.
    4. Xuehong Gao, 2022. "A bi-level stochastic optimization model for multi-commodity rebalancing under uncertainty in disaster response," Annals of Operations Research, Springer, vol. 319(1), pages 115-148, December.
    5. Dufour, Émilie & Laporte, Gilbert & Paquette, Julie & Rancourt, Marie–Ève, 2018. "Logistics service network design for humanitarian response in East Africa," Omega, Elsevier, vol. 74(C), pages 1-14.
    6. Michael R. Miller & Robert J. Alexander & Vincent A. Arbige & Robert F. Dell & Steven R. Kremer & Brian P. McClune & Jane E. Oppenlander & Joshua P. Tomlin, 2017. "Optimal Allocation of Students to Naval Nuclear-Power Training Units," Interfaces, INFORMS, vol. 47(4), pages 320-335, August.
    7. De Boeck, Kim & Decouttere, Catherine & Jónasson, Jónas Oddur & Vandaele, Nico, 2022. "Vaccine supply chains in resource-limited settings: Mitigating the impact of rainy season disruptions," European Journal of Operational Research, Elsevier, vol. 301(1), pages 300-317.
    8. David Simchi-Levi & Nikolaos Trichakis & Peter Yun Zhang, 2019. "Designing Response Supply Chain Against Bioattacks," Operations Research, INFORMS, vol. 67(5), pages 1246-1268, September.
    9. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    10. Víctor Suñé, 2017. "Computing the Expected Markov Reward Rates with Stationarity Detection and Relative Error Control," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 445-485, June.
    11. Rafiei, Rezvan & Huang, Kai & Verma, Manish, 2022. "Cash versus in-kind transfer programs in humanitarian operations: An optimization program and a case study," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    12. Melissa Gama & Bruno Filipe Santos & Maria Paola Scaparra, 2016. "A multi-period shelter location-allocation model with evacuation orders for flood disasters," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 299-323, September.
    13. Amy Givler Chapman & John E. Mitchell, 2018. "A fair division approach to humanitarian logistics inspired by conditional value-at-risk," Annals of Operations Research, Springer, vol. 262(1), pages 133-151, March.
    14. Roberto Gomes de Mattos & Fabricio Oliveira & Adriana Leiras & Abdon Baptista de Paula Filho & Paulo Gonçalves, 2019. "Robust optimization of the insecticide-treated bed nets procurement and distribution planning under uncertainty for malaria prevention and control," Annals of Operations Research, Springer, vol. 283(1), pages 1045-1078, December.
    15. Sung, Inkyung & Lee, Taesik, 2016. "Optimal allocation of emergency medical resources in a mass casualty incident: Patient prioritization by column generation," European Journal of Operational Research, Elsevier, vol. 252(2), pages 623-634.
    16. Giovanni Musolino & Reza Ahmadian & Junqiang Xia, 2022. "Enhancing pedestrian evacuation routes during flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1941-1965, July.
    17. M. Arns & P. Buchholz & A. Panchenko, 2010. "On the Numerical Analysis of Inhomogeneous Continuous-Time Markov Chains," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 416-432, August.
    18. Huizhu Wang & Jianqin Zhou & Ling Zhou, 2024. "A Lattice Boltzmann Method-like Algorithm for the Maximal Covering Location Problem on the Complex Network: Application to Location of Railway Emergency-Rescue Spot," Mathematics, MDPI, vol. 12(2), pages 1-20, January.
    19. Sheu, Jiuh-Biing & Pan, Cheng, 2014. "A method for designing centralized emergency supply network to respond to large-scale natural disasters," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 284-305.
    20. Battarra, Maria & Balcik, Burcu & Xu, Huifu, 2018. "Disaster preparedness using risk-assessment methods from earthquake engineering," European Journal of Operational Research, Elsevier, vol. 269(2), pages 423-435.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:228:y:2020:i:c:s0925527320300463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.