IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v19y2017i2d10.1007_s11009-016-9490-y.html
   My bibliography  Save this article

Computing the Expected Markov Reward Rates with Stationarity Detection and Relative Error Control

Author

Listed:
  • Víctor Suñé

    (Universitat Politècnica de Catalunya)

Abstract

By combining in a novel way the randomization method with the stationary detection technique, we develop two new algorithms for the computation of the expected reward rates of finite, irreducible Markov reward models, with control of the relative error. The first algorithm computes the expected transient reward rate and the second one computes the expected averaged reward rate. The algorithms are numerically stable. Further, it is argued that, from the point of view of run-time computational cost, for medium-sized and large Markov reward models, we can expect the algorithms to be better than the only variant of the randomization method that allows to control the relative error and better than the approach that consists in employing iteratively the currently existing algorithms that use the randomization method with stationarity detection but allow to control the absolute error. The performance of the new algorithms is illustrated by means of examples, showing that the algorithms can be not only faster but also more efficient than the alternatives in terms of run-time computational cost in relation to accuracy.

Suggested Citation

  • Víctor Suñé, 2017. "Computing the Expected Markov Reward Rates with Stationarity Detection and Relative Error Control," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 445-485, June.
  • Handle: RePEc:spr:metcap:v:19:y:2017:i:2:d:10.1007_s11009-016-9490-y
    DOI: 10.1007/s11009-016-9490-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-016-9490-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-016-9490-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donald Gross & Douglas R. Miller, 1984. "The Randomization Technique as a Modeling Tool and Solution Procedure for Transient Markov Processes," Operations Research, INFORMS, vol. 32(2), pages 343-361, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Arns & P. Buchholz & A. Panchenko, 2010. "On the Numerical Analysis of Inhomogeneous Continuous-Time Markov Chains," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 416-432, August.
    2. Congjin Zhou & Guojing Wang & Yinghui Dong & Pin Wang, 2024. "The Valuation at Origination of Mortgages with Full Prepayment and Default Risks," Methodology and Computing in Applied Probability, Springer, vol. 26(2), pages 1-26, June.
    3. Boquan Cheng & Rogemar Mamon, 2023. "A uniformisation-driven algorithm for inference-related estimation of a phase-type ageing model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 142-187, January.
    4. Michel Mandjes & Birgit Sollie, 2022. "A Numerical Approach for Evaluating the Time-Dependent Distribution of a Quasi Birth-Death Process," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1693-1715, September.
    5. Ozen, Merve & Krishnamurthy, Ananth, 2020. "Resource allocation models for material convergence," International Journal of Production Economics, Elsevier, vol. 228(C).
    6. Jamal Temsamani & Juan A. Carrasco, 2006. "Transient analysis of Markov models of fault‐tolerant systems with deferred repair using split regenerative randomization," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(4), pages 318-353, June.
    7. Juan A. Carrasco, 2013. "A New General-Purpose Method for the Computation of the Interval Availability Distribution," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 774-791, November.
    8. Juan A. Carrasco, 2016. "Numerically Stable Methods for the Computation of Exit Rates in Markov Chains," Methodology and Computing in Applied Probability, Springer, vol. 18(2), pages 307-334, June.
    9. Chen, Weiwei & Kumcu, Gül Çulhan & Melamed, Benjamin & Baveja, Alok, 2023. "Managing resource allocation for the recruitment stocking problem," Omega, Elsevier, vol. 120(C).
    10. Donald Gross & Leonidas C. Kioussis & Douglas R. Miller, 1987. "Transient behavior of large Markovian multiechelon repairable item inventory systems using a truncated state space approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(2), pages 173-198, April.
    11. Suñé, Víctor & Carrasco, Juan Antonio, 2017. "Implicit ODE solvers with good local error control for the transient analysis of Markov models," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 96-111.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:19:y:2017:i:2:d:10.1007_s11009-016-9490-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.