IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i5p1607-d146848.html
   My bibliography  Save this article

A Voting TOPSIS Approach for Determining the Priorities of Areas Damaged in Disasters

Author

Listed:
  • Yanjin He

    (Graduate School of Logistics, Inha University, Incheon 22212, Korea)

  • Hosang Jung

    (Asia Pacific School of Logistics, Inha University, Incheon 22212, Korea)

Abstract

In this paper, we investigate the priority determination problem for areas that have been damaged during disasters. Relief distribution should be planned while considering the priorities of the damaged areas. To determine the priorities of the damaged areas, we first define four criteria and then propose a voting TOPSIS (technique for order of preference by similarity to ideal solution) that utilizes the fuzzy pair-wise comparison, data envelopment analysis, and TOPSIS. Since the voting TOPSIS is based on the voting results of multiple experts, it can be applied to urgent situations quickly, regardless of the consistency of comparison, the number of alternatives, and the number of participating experts. The proposed approach is validated using a real-world case, and this case analysis shows that the voting TOPSIS is viable.

Suggested Citation

  • Yanjin He & Hosang Jung, 2018. "A Voting TOPSIS Approach for Determining the Priorities of Areas Damaged in Disasters," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1607-:d:146848
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/5/1607/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/5/1607/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kuo, Ting, 2017. "A modified TOPSIS with a different ranking index," European Journal of Operational Research, Elsevier, vol. 260(1), pages 152-160.
    2. Sheu, Jiuh-Biing, 2007. "An emergency logistics distribution approach for quick response to urgent relief demand in disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 687-709, November.
    3. Yi, Wei & Ozdamar, Linet, 2007. "A dynamic logistics coordination model for evacuation and support in disaster response activities," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1177-1193, June.
    4. Afshar, Abbas & Haghani, Ali, 2012. "Modeling integrated supply chain logistics in real-time large-scale disaster relief operations," Socio-Economic Planning Sciences, Elsevier, vol. 46(4), pages 327-338.
    5. Hosang Jung, 2017. "Evaluation of Third Party Logistics Providers Considering Social Sustainability," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    6. Rivera-Royero, Daniel & Galindo, Gina & Yie-Pinedo, Ruben, 2016. "A dynamic model for disaster response considering prioritized demand points," Socio-Economic Planning Sciences, Elsevier, vol. 55(C), pages 59-75.
    7. Sheu, Jiuh-Biing, 2010. "Dynamic relief-demand management for emergency logistics operations under large-scale disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(1), pages 1-17, January.
    8. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    9. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    10. Liu, Fuh-Hwa Franklin & Hai, Hui Lin, 2005. "The voting analytic hierarchy process method for selecting supplier," International Journal of Production Economics, Elsevier, vol. 97(3), pages 308-317, September.
    11. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    12. Noham, Reut & Tzur, Michal, 2018. "Designing humanitarian supply chains by incorporating actual post-disaster decisions," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1064-1077.
    13. Nilay Noyan & Burcu Balcik & Semih Atakan, 2016. "A Stochastic Optimization Model for Designing Last Mile Relief Networks," Transportation Science, INFORMS, vol. 50(3), pages 1092-1113, August.
    14. Erica Gralla & Jarrod Goentzel & Charles Fine, 2014. "Assessing Trade-offs among Multiple Objectives for Humanitarian Aid Delivery Using Expert Preferences," Production and Operations Management, Production and Operations Management Society, vol. 23(6), pages 978-989, June.
    15. Gutjahr, Walter J. & Nolz, Pamela C., 2016. "Multicriteria optimization in humanitarian aid," European Journal of Operational Research, Elsevier, vol. 252(2), pages 351-366.
    16. Y M Wang & K S Chin & J B Yang, 2007. "Three new models for preference voting and aggregation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(10), pages 1389-1393, October.
    17. Lin, Yen-Hung & Batta, Rajan & Rogerson, Peter A. & Blatt, Alan & Flanigan, Marie, 2011. "A logistics model for emergency supply of critical items in the aftermath of a disaster," Socio-Economic Planning Sciences, Elsevier, vol. 45(4), pages 132-145, December.
    18. Sawada, Yasuyuki & Takasaki, Yoshito, 2017. "Natural Disaster, Poverty, and Development: An Introduction," World Development, Elsevier, vol. 94(C), pages 2-15.
    19. Wade D. Cook & Moshe Kress, 1990. "A Data Envelopment Model for Aggregating Preference Rankings," Management Science, INFORMS, vol. 36(11), pages 1302-1310, November.
    20. Jiazhen Peng & Xiaojun Shan & Yang Gao & Yohannes Kesete & Rachel Davidson & Linda Nozick & Jamie Kruse, 2014. "Modeling the integrated roles of insurance and retrofit in managing natural disaster risk: a multi-stakeholder perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 1043-1068, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christos A. Kontovas & Krishna Sooprayen, 2020. "Maritime Cargo Prioritisation during a Prolonged Pandemic Lockdown Using an Integrated TOPSIS-Knapsack Technique: A Case Study on Small Island Developing States—The Rodrigues Island," Sustainability, MDPI, vol. 12(19), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    2. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.
    3. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    4. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency Relief Routing Models for Injured Victims Considering Equity and Priority," Post-Print hal-02879681, HAL.
    5. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency relief routing models for injured victims considering equity and priority," Annals of Operations Research, Springer, vol. 283(1), pages 1573-1606, December.
    6. Noham, Reut & Tzur, Michal, 2018. "Designing humanitarian supply chains by incorporating actual post-disaster decisions," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1064-1077.
    7. Rivera-Royero, Daniel & Galindo, Gina & Yie-Pinedo, Ruben, 2020. "Planning the delivery of relief supplies upon the occurrence of a natural disaster while considering the assembly process of the relief kits," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    8. Renata Turkeš & Daniel Palhazi Cuervo & Kenneth Sörensen, 2019. "Pre-positioning of emergency supplies: does putting a price on human life help to save lives?," Annals of Operations Research, Springer, vol. 283(1), pages 865-895, December.
    9. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    10. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    11. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    12. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    13. Zhongzhen Yang & Liquan Guo & Zaili Yang, 2019. "Emergency logistics for wildfire suppression based on forecasted disaster evolution," Annals of Operations Research, Springer, vol. 283(1), pages 917-937, December.
    14. Gralla, Erica & Goentzel, Jarrod, 2018. "Humanitarian transportation planning: Evaluation of practice-based heuristics and recommendations for improvement," European Journal of Operational Research, Elsevier, vol. 269(2), pages 436-450.
    15. Najafi, Mehdi & Eshghi, Kourosh & Dullaert, Wout, 2013. "A multi-objective robust optimization model for logistics planning in the earthquake response phase," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 217-249.
    16. Rezaei-Malek, Mohammad & Tavakkoli-Moghaddam, Reza & Cheikhrouhou, Naoufel & Taheri-Moghaddam, Alireza, 2016. "An approximation approach to a trade-off among efficiency, efficacy, and balance for relief pre-positioning in disaster management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 485-509.
    17. Huang, Kai & Jiang, Yiping & Yuan, Yufei & Zhao, Lindu, 2015. "Modeling multiple humanitarian objectives in emergency response to large-scale disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 1-17.
    18. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    19. Souza, Juliano Silva & Lim-Apo, Flávio Araújo & Varella, Leonardo & Coelho, Antônio Sérgio & Souza, João Carlos, 2022. "Multi-period optimization model for planning people allocation in shelters and distributing aid with special constraints," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    20. Sheu, Jiuh-Biing & Pan, Cheng, 2014. "A method for designing centralized emergency supply network to respond to large-scale natural disasters," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 284-305.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1607-:d:146848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.