IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i11p3931-d179058.html
   My bibliography  Save this article

Mixed Model Assembly Line Scheduling Approach to Order Picking Problem in Online Supermarkets

Author

Listed:
  • Minfang Huang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Qiong Guo

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Jing Liu

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Xiaoxu Huang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

Abstract

Online retail orders, especially online supermarket orders, have been highlighted to have several distinguished features from traditional online retailers. These include a huge amount of daily orders and orders containing multiple items. Tens of thousands of Stock Keeping Units (SKUs) sold by online retailers have to be stored at multiple storage zones due to the limit capacity of one area, and ordered items should to be picked with a parallel picking strategy. What is the most efficient and accurate method of picking, sorting and packaging the ordered items from SKUs for online orders? This paper focuses on scheduling the three processes of order picking problems in a warehouse for an online supermarket. Referring to the principle of the mixed-model assembly line, it presents a new optimization method of group order picking. With an objective of minimizing the picking and packaging time, this paper studies order batching and order sequencing. In order batching, considering the workload balance, it builds a mathematical optimization model and applies a bi-objective genetic algorithm to solve it. Then an order batching sequencing model is built, and a solving algorithm based on Pseudo-Boolean Optimization is developed. Case study and sensitivity analyses are conducted to verify the effectiveness of the method.

Suggested Citation

  • Minfang Huang & Qiong Guo & Jing Liu & Xiaoxu Huang, 2018. "Mixed Model Assembly Line Scheduling Approach to Order Picking Problem in Online Supermarkets," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:3931-:d:179058
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/11/3931/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/11/3931/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ping Josephine Xu & Russell Allgor & Stephen C. Graves, 2009. "Benefits of Reevaluating Real-Time Order Fulfillment Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 340-355, January.
    2. René de Koster & Yeming Gong, 2008. "A polling-based dynamic order picking system for online retailers," Post-Print hal-02312476, HAL.
    3. Chen, Tzu-Li & Cheng, Chen-Yang & Chen, Yin-Yann & Chan, Li-Kai, 2015. "An efficient hybrid algorithm for integrated order batching, sequencing and routing problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 158-167.
    4. Van Nieuwenhuyse, Inneke & de Koster, René B.M., 2009. "Evaluating order throughput time in 2-block warehouses with time window batching," International Journal of Production Economics, Elsevier, vol. 121(2), pages 654-664, October.
    5. Kucukkoc, Ibrahim & Zhang, David Z., 2014. "Mathematical model and agent based solution approach for the simultaneous balancing and sequencing of mixed-model parallel two-sided assembly lines," International Journal of Production Economics, Elsevier, vol. 158(C), pages 314-333.
    6. Mohd Nadhir Ab Wahab & Samia Nefti-Meziani & Adham Atyabi, 2015. "A Comprehensive Review of Swarm Optimization Algorithms," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-36, May.
    7. Hsieh, Ling-Feng & Huang, Yi-Chen, 2011. "New batch construction heuristics to optimise the performance of order picking systems," International Journal of Production Economics, Elsevier, vol. 131(2), pages 618-630, June.
    8. Valle, Cristiano Arbex & Beasley, John E. & da Cunha, Alexandre Salles, 2017. "Optimally solving the joint order batching and picker routing problem," European Journal of Operational Research, Elsevier, vol. 262(3), pages 817-834.
    9. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    10. İbrahim Muter & Temel Öncan, 2015. "An exact solution approach for the order batching problem," IISE Transactions, Taylor & Francis Journals, vol. 47(7), pages 728-738, July.
    11. Soondo Hong & Andrew Johnson & Brett Peters, 2012. "Large-scale order batching in parallel-aisle picking systems," IISE Transactions, Taylor & Francis Journals, vol. 44(2), pages 88-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pardo, Eduardo G. & Gil-Borrás, Sergio & Alonso-Ayuso, Antonio & Duarte, Abraham, 2024. "Order batching problems: Taxonomy and literature review," European Journal of Operational Research, Elsevier, vol. 313(1), pages 1-24.
    2. Masood Fathi & Morteza Ghobakhloo, 2020. "Enabling Mass Customization and Manufacturing Sustainability in Industry 4.0 Context: A Novel Heuristic Algorithm for in-Plant Material Supply Optimization," Sustainability, MDPI, vol. 12(16), pages 1-15, August.
    3. Arbex Valle, Cristiano & Beasley, John E, 2020. "Order batching using an approximation for the distance travelled by pickers," European Journal of Operational Research, Elsevier, vol. 284(2), pages 460-484.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    2. Pardo, Eduardo G. & Gil-Borrás, Sergio & Alonso-Ayuso, Antonio & Duarte, Abraham, 2024. "Order batching problems: Taxonomy and literature review," European Journal of Operational Research, Elsevier, vol. 313(1), pages 1-24.
    3. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    4. Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.
    5. Ardjmand, Ehsan & Shakeri, Heman & Singh, Manjeet & Sanei Bajgiran, Omid, 2018. "Minimizing order picking makespan with multiple pickers in a wave picking warehouse," International Journal of Production Economics, Elsevier, vol. 206(C), pages 169-183.
    6. Giannikas, Vaggelis & Lu, Wenrong & Robertson, Brian & McFarlane, Duncan, 2017. "An interventionist strategy for warehouse order picking: Evidence from two case studies," International Journal of Production Economics, Elsevier, vol. 189(C), pages 63-76.
    7. Fangyu Chen & Yongchang Wei & Hongwei Wang, 2018. "A heuristic based batching and assigning method for online customer orders," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 640-685, December.
    8. Wagner, Stefan & Mönch, Lars, 2023. "A variable neighborhood search approach to solve the order batching problem with heterogeneous pick devices," European Journal of Operational Research, Elsevier, vol. 304(2), pages 461-475.
    9. MacCarthy, Bart L. & Zhang, Lina & Muyldermans, Luc, 2019. "Best Performance Frontiers for Buy-Online-Pickup-in-Store order fulfilment," International Journal of Production Economics, Elsevier, vol. 211(C), pages 251-264.
    10. van Gils, Teun & Ramaekers, Katrien & Braekers, Kris & Depaire, Benoît & Caris, An, 2018. "Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions," International Journal of Production Economics, Elsevier, vol. 197(C), pages 243-261.
    11. Pan, Jason Chao-Hsien & Shih, Po-Hsun & Wu, Ming-Hung, 2015. "Order batching in a pick-and-pass warehousing system with group genetic algorithm," Omega, Elsevier, vol. 57(PB), pages 238-248.
    12. Xie, Lin & Li, Hanyi & Luttmann, Laurin, 2023. "Formulating and solving integrated order batching and routing in multi-depot AGV-assisted mixed-shelves warehouses," European Journal of Operational Research, Elsevier, vol. 307(2), pages 713-730.
    13. Stef Moons & Katrien Ramaekers & An Caris & Yasemin Arda, 2018. "Integration of order picking and vehicle routing in a B2C e-commerce context," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 813-843, December.
    14. Li Zhou & Huwei Liu & Junhui Zhao & Fan Wang & Jianglong Yang, 2022. "Performance Analysis of Picking Routing Strategies in the Leaf Layout Warehouse," Mathematics, MDPI, vol. 10(17), pages 1-28, September.
    15. Žulj, Ivan & Salewski, Hagen & Goeke, Dominik & Schneider, Michael, 2022. "Order batching and batch sequencing in an AMR-assisted picker-to-parts system," European Journal of Operational Research, Elsevier, vol. 298(1), pages 182-201.
    16. Lu, Wenrong & McFarlane, Duncan & Giannikas, Vaggelis & Zhang, Quan, 2016. "An algorithm for dynamic order-picking in warehouse operations," European Journal of Operational Research, Elsevier, vol. 248(1), pages 107-122.
    17. Çağla Cergibozan & A. Serdar Tasan, 2022. "Genetic algorithm based approaches to solve the order batching problem and a case study in a distribution center," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 137-149, January.
    18. Briant, Olivier & Cambazard, Hadrien & Cattaruzza, Diego & Catusse, Nicolas & Ladier, Anne-Laure & Ogier, Maxime, 2020. "An efficient and general approach for the joint order batching and picker routing problem," European Journal of Operational Research, Elsevier, vol. 285(2), pages 497-512.
    19. Masae, Makusee & Glock, Christoph H. & Vichitkunakorn, Panupong, 2021. "A method for efficiently routing order pickers in the leaf warehouse," International Journal of Production Economics, Elsevier, vol. 234(C).
    20. Arbex Valle, Cristiano & Beasley, John E, 2020. "Order batching using an approximation for the distance travelled by pickers," European Journal of Operational Research, Elsevier, vol. 284(2), pages 460-484.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:3931-:d:179058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.