IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v156y2014icp146-158.html
   My bibliography  Save this article

Setting safety stocks for stable rotation cycle schedules

Author

Listed:
  • Rappold, James A.
  • Yoho, Keenan D.

Abstract

In the process industries, specialized equipment and production processes often necessitate the manufacture of products in a pre-determined sequence to minimize changeover time and to simplify scheduling complexity; these types of schedules are referred to as pure rotation schedules, or product wheels, where the circumference of the wheel is the production cycle length. In these industries changeover times between the production of individual products can consume considerable time as well as raw materials and it is therefore often desirable to stabilize the production cycles in order to minimize unplanned changeovers as well as quote accurate lead times to customers. Materials requirements planning (MRP) systems are often used to plan and coordinate production and supply resources with demand in these environments. Central to the effectiveness of the MRP system is the dependability of the lead time parameters. In this paper, we introduce an optimization model to determine safety stock levels that minimize long run expected costs where a stable, cyclic schedule is used. Our model may be used strategically to assess inventory investment requirements as a function of capacity investment, product mix, production technology, demand volatility, and customer service levels. It may be used tactically to optimize item-level planning parameters such as lot size, safety stock and lead time in an MRP system and to support sales and operations planning (S&OP) processes where knowing the future costs associated with current decisions is highly desirable.

Suggested Citation

  • Rappold, James A. & Yoho, Keenan D., 2014. "Setting safety stocks for stable rotation cycle schedules," International Journal of Production Economics, Elsevier, vol. 156(C), pages 146-158.
  • Handle: RePEc:eee:proeco:v:156:y:2014:i:c:p:146-158
    DOI: 10.1016/j.ijpe.2014.05.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527314001832
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2014.05.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donald D. Eisenstein, 2005. "Recovering Cyclic Schedules Using Dynamic Produce-Up-To Policies," Operations Research, INFORMS, vol. 53(4), pages 675-688, August.
    2. Christian M. Delporte & L. Joseph Thomas, 1977. "Lot Sizing and Sequencing for N Products on One Facility," Management Science, INFORMS, vol. 23(10), pages 1070-1079, June.
    3. Robin Roundy, 1989. "Rounding Off to Powers of Two in Continuous Relaxations of Capacitated Lot Sizing Problems," Management Science, INFORMS, vol. 35(12), pages 1433-1442, December.
    4. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    5. Salah E. Elmaghraby, 1978. "The Economic Lot Scheduling Problem (ELSP): Review and Extensions," Management Science, INFORMS, vol. 24(6), pages 587-598, February.
    6. Wei-Min Lan & Tava Lennon Olsen, 2006. "Multiproduct Systems with Both Setup Times and Costs: Fluid Bounds and Schedules," Operations Research, INFORMS, vol. 54(3), pages 505-522, June.
    7. Awi Federgruen & Ziv Katalan, 1996. "The Impact of Setup Times on the Performance of Multiclass Service and Production Systems," Operations Research, INFORMS, vol. 44(6), pages 989-1001, December.
    8. Ould-Louly, Mohamed-Aly & Dolgui, Alexandre, 2004. "The MPS parameterization under lead time uncertainty," International Journal of Production Economics, Elsevier, vol. 90(3), pages 369-376, August.
    9. D. Sarkar & W. I. Zangwill, 1989. "Expected Waiting Time for Nonsymmetric Cyclic Queueing Systems---Exact Results and Applications," Management Science, INFORMS, vol. 35(12), pages 1463-1474, December.
    10. Dolgui, Alexandre & Ould-Louly, Mohamed-Aly, 2002. "A model for supply planning under lead time uncertainty," International Journal of Production Economics, Elsevier, vol. 78(2), pages 145-152, July.
    11. Awi Federgruen & Ziv Katalan, 1996. "The Stochastic Economic Lot Scheduling Problem: Cyclical Base-Stock Policies with Idle Times," Management Science, INFORMS, vol. 42(6), pages 783-796, June.
    12. Stephen C. Graves, 1979. "Note--On the Deterministic Demand Multi-Product Single-Machine Lot Scheduling Problem," Management Science, INFORMS, vol. 25(3), pages 276-280, March.
    13. Awi Federgruen & Ziv Katalan, 1998. "Determining Production Schedules Under Base-Stock Policies in Single Facility Multi-Item Production Systems," Operations Research, INFORMS, vol. 46(6), pages 883-898, December.
    14. Fransoo, Jan C. & Sridharan, V. & Bertrand, J.Will M., 1995. "A hierarchical approach for capacity coordination in multiple products single-machine production systems with stationary stochastic demands," European Journal of Operational Research, Elsevier, vol. 86(1), pages 57-72, October.
    15. Stan van Hoesel & H. Edwin Romeijn & Dolores Romero Morales & Albert P. M. Wagelmans, 2005. "Integrated Lot Sizing in Serial Supply Chains with Production Capacities," Management Science, INFORMS, vol. 51(11), pages 1706-1719, November.
    16. Robert C. Leachman & André Gascon, 1988. "A Heuristic Scheduling Policy for Multi-Item, Single-Machine Production Systems with Time-Varying, Stochastic Demands," Management Science, INFORMS, vol. 34(3), pages 377-390, March.
    17. Debashish Sarkar & Willard I. Zangwill, 1991. "Variance Effects in Cyclic Production Systems," Management Science, INFORMS, vol. 37(4), pages 444-453, April.
    18. Karla E. Bourland & Candace A. Yano, 1994. "The Strategic Use of Capacity Slack in the Economic Lot Scheduling Problem with Random Demand," Management Science, INFORMS, vol. 40(12), pages 1690-1704, December.
    19. Guillermo Gallego, 1994. "When is a base stock policy optimal in recovering disrupted cyclic schedules?," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(3), pages 317-333, April.
    20. Mula, J. & Poler, R. & Garcia-Sabater, J.P. & Lario, F.C., 2006. "Models for production planning under uncertainty: A review," International Journal of Production Economics, Elsevier, vol. 103(1), pages 271-285, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barros, Júlio & Cortez, Paulo & Carvalho, M. Sameiro, 2021. "A systematic literature review about dimensioning safety stock under uncertainties and risks in the procurement process," Operations Research Perspectives, Elsevier, vol. 8(C).
    2. Zied Bahroun & Nidhal Belgacem, 2019. "Determination of dynamic safety stocks for cyclic production schedules," Operations Management Research, Springer, vol. 12(1), pages 62-93, June.
    3. Gonçalves, João N.C. & Sameiro Carvalho, M. & Cortez, Paulo, 2020. "Operations research models and methods for safety stock determination: A review," Operations Research Perspectives, Elsevier, vol. 7(C).
    4. Briskorn, Dirk & Zeise, Philipp & Packowski, Josef, 2016. "Quasi-fixed cyclic production schemes for multiple products with stochastic demand," European Journal of Operational Research, Elsevier, vol. 252(1), pages 156-169.
    5. Dirk Briskorn & Philipp Zeise, 2019. "A cyclic production scheme for the synchronized and integrated two-level lot-sizing and scheduling problem with no-wait restrictions and stochastic demand," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 895-942, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Winands, E.M.M. & Adan, I.J.B.F. & van Houtum, G.J., 2011. "The stochastic economic lot scheduling problem: A survey," European Journal of Operational Research, Elsevier, vol. 210(1), pages 1-9, April.
    2. Lopez de Haro, Santiago & Gershwin, Stanley B. & Rosenfield, Donald B., 2009. "Schedule evaluation in unstable manufacturing environments," International Journal of Production Economics, Elsevier, vol. 121(1), pages 183-194, September.
    3. Briskorn, Dirk & Zeise, Philipp & Packowski, Josef, 2016. "Quasi-fixed cyclic production schemes for multiple products with stochastic demand," European Journal of Operational Research, Elsevier, vol. 252(1), pages 156-169.
    4. Brander, Par & Forsberg, Rolf, 2006. "Determination of safety stocks for cyclic schedules with stochastic demands," International Journal of Production Economics, Elsevier, vol. 104(2), pages 271-295, December.
    5. Sox, Charles R. & Jackson, Peter L. & Bowman, Alan & Muckstadt, John A., 1999. "A review of the stochastic lot scheduling problem," International Journal of Production Economics, Elsevier, vol. 62(3), pages 181-200, September.
    6. Donald D. Eisenstein, 2005. "Recovering Cyclic Schedules Using Dynamic Produce-Up-To Policies," Operations Research, INFORMS, vol. 53(4), pages 675-688, August.
    7. Kamath B, Narasimha & Bhattacharya, Subir, 2007. "Lead time minimization of a multi-product, single-processor system: A comparison of cyclic policies," International Journal of Production Economics, Elsevier, vol. 106(1), pages 28-40, March.
    8. David M. Markowitz & Lawrence M. Wein, 2001. "Heavy Traffic Analysis of Dynamic Cyclic Policies: A Unified Treatment of the Single Machine Scheduling Problem," Operations Research, INFORMS, vol. 49(2), pages 246-270, April.
    9. Kampf, M. & Kochel, P., 2006. "Simulation-based sequencing and lot size optimisation for a production-and-inventory system with multiple items," International Journal of Production Economics, Elsevier, vol. 104(1), pages 191-200, November.
    10. Subhashish Samaddar & Thomas Whalen, 2008. "Improving Performance in Cyclic Production Systems by Using Forced Variable Idle Setup Time," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 173-180, August.
    11. Louly, Mohamed-Aly & Dolgui, Alexandre, 2011. "Optimal time phasing and periodicity for MRP with POQ policy," International Journal of Production Economics, Elsevier, vol. 131(1), pages 76-86, May.
    12. Vaughan, Timothy S., 2007. "Cyclical schedules vs. dynamic sequencing: Replenishment dynamics and inventory efficiency," International Journal of Production Economics, Elsevier, vol. 107(2), pages 518-527, June.
    13. Guillermo Gallego & Robin Roundy, 1992. "The economic lot scheduling problem with finite backorder costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(5), pages 729-739, August.
    14. Salvietti, Luciano & Smith, Neale R., 2008. "A profit-maximizing economic lot scheduling problem with price optimization," European Journal of Operational Research, Elsevier, vol. 184(3), pages 900-914, February.
    15. Jodlbauer, Herbert & Reitner, Sonja, 2012. "Optimizing service-level and relevant cost for a stochastic multi-item cyclic production system," International Journal of Production Economics, Elsevier, vol. 136(2), pages 306-317.
    16. Kimms, Alf & Drexl, Andreas, 1996. "Multi-level lot sizing: A literature survey," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 405, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    17. David M. Markowitz & Martin I. Reiman & Lawrence M. Wein, 2000. "The Stochastic Economic Lot Scheduling Problem: Heavy Traffic Analysis of Dynamic Cyclic Policies," Operations Research, INFORMS, vol. 48(1), pages 136-154, February.
    18. Robert B. Cooper & Shun-Chen Niu & Mandyam M. Srinivasan, 1998. "When Does Forced Idle Time Improve Performance in Polling Models?," Management Science, INFORMS, vol. 44(8), pages 1079-1086, August.
    19. Khouja, Moutaz & Michalewicz, Zgibniew & Wilmot, Michael, 1998. "The use of genetic algorithms to solve the economic lot size scheduling problem," European Journal of Operational Research, Elsevier, vol. 110(3), pages 509-524, November.
    20. McGee, Victor E. & Pyke, David F., 1996. "Periodic production scheduling at a fastener manufacturer," International Journal of Production Economics, Elsevier, vol. 46(1), pages 65-87, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:156:y:2014:i:c:p:146-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.