IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v123y2010i1p31-41.html
   My bibliography  Save this article

Integrated component scheduling models for chip shooter machines

Author

Listed:
  • Ho, William
  • Ji, Ping

Abstract

This paper focuses on minimizing printed circuit board (PCB) assembly time for a chip shooter machine, which has a movable feeder carrier holding components, a movable X-Y table carrying a PCB, and a rotary turret with multiple assembly heads. The assembly time of the machine depends on two inter-related optimization problems: the component sequencing problem and the feeder arrangement problem. Nevertheless, they were often regarded as two individual problems and solved separately. This paper proposes two complete mathematical models for the integrated problem of the machine. The models are verified by two commercial packages. Finally, a hybrid genetic algorithm previously developed by the authors is presented to solve the model. The algorithm not only generates the optimal solutions quickly for small-sized problems, but also outperforms the genetic algorithms developed by other researchers in terms of total assembly time.

Suggested Citation

  • Ho, William & Ji, Ping, 2010. "Integrated component scheduling models for chip shooter machines," International Journal of Production Economics, Elsevier, vol. 123(1), pages 31-41, January.
  • Handle: RePEc:eee:proeco:v:123:y:2010:i:1:p:31-41
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(09)00246-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lova, Antonio & Tormos, Pilar & Cervantes, Mariamar & Barber, Federico, 2009. "An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes," International Journal of Production Economics, Elsevier, vol. 117(2), pages 302-316, February.
    2. Klomp, Cornelis & van de Klundert, Joris & Spieksma, Frits C. R. & Voogt, Siem, 2000. "The feeder rack assignment problem in PCB assembly: A case study," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 399-407, March.
    3. ElMekkawy, T.Y. & Liu, S., 2009. "A new memetic algorithm for optimizing the partitioning problem of tandem AGV systems," International Journal of Production Economics, Elsevier, vol. 118(2), pages 508-520, April.
    4. Aristides Dikos & Peter Nelson & Thomas Tirpak & Weihsin Wang, 1997. "Optimization of high-mix printed circuit card assembly using genetic algorithms," Annals of Operations Research, Springer, vol. 75(0), pages 303-324, January.
    5. Crama, Yves & Flippo, Olaf E. & van de Klundert, Joris & Spieksma, Frits C. R., 1997. "The assembly of printed circuit boards: A case with multiple machines and multiple board types," European Journal of Operational Research, Elsevier, vol. 98(3), pages 457-472, May.
    6. Farahani, Reza Zanjirani & Elahipanah, Mahsa, 2008. "A genetic algorithm to optimize the total cost and service level for just-in-time distribution in a supply chain," International Journal of Production Economics, Elsevier, vol. 111(2), pages 229-243, February.
    7. Altinkemer, Kemal & Kazaz, Burak & Koksalan, Murat & Moskowitz, Herbert, 2000. "Optimization of printed circuit board manufacturing: Integrated modeling and algorithms," European Journal of Operational Research, Elsevier, vol. 124(2), pages 409-421, July.
    8. Huang, Xiaoxia, 2007. "Optimal project selection with random fuzzy parameters," International Journal of Production Economics, Elsevier, vol. 106(2), pages 513-522, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, N., 2014. "Optimal scope of supply chain network & operations design," Other publications TiSEM e6187708-b664-44bf-aef8-f, Tilburg University, School of Economics and Management.
    2. Jihee Han & Yoonho Seo, 2017. "Mechanism to minimise the assembly time with feeder assignment for a multi-headed gantry and high-speed SMT machine," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2930-2949, May.
    3. Battaïa, Olga & Dolgui, Alexandre & Guschinsky, Nikolai, 2023. "MIP-based heuristics for combinatorial design of reconfigurable rotary transfer machines for production of multiple parts," International Journal of Production Economics, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Dong-Seok & Lee, Tae-Eog & Kim, Kyung-Hoon, 2005. "Component allocation and feeder arrangement for a dual-gantry multi-head surface mounting placement tool," International Journal of Production Economics, Elsevier, vol. 95(2), pages 245-264, February.
    2. Ayob, Masri & Kendall, Graham, 2008. "A survey of surface mount device placement machine optimisation: Machine classification," European Journal of Operational Research, Elsevier, vol. 186(3), pages 893-914, May.
    3. Kazaz, Burak & Altinkemer, Kemal, 2003. "Optimization of multi-feeder (depot) printed circuit board manufacturing with error guarantees," European Journal of Operational Research, Elsevier, vol. 150(2), pages 370-394, October.
    4. Ilkyeong Moon & Sanghyup Lee & Moonsoo Shin & Kwangyeol Ryu, 2016. "Evolutionary resource assignment for workload-based production scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 375-388, April.
    5. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustin Barrios-Sarmiento, 2021. "A memetic algorithm to address the multi-node resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 24(4), pages 413-429, August.
    6. Len Vandenheede & Mario Vanhoucke & Broos Maenhout, 2016. "A scatter search for the extended resource renting problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4723-4743, August.
    7. Kadri, Roubila Lilia & Boctor, Fayez F., 2018. "An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case," European Journal of Operational Research, Elsevier, vol. 265(2), pages 454-462.
    8. Wang, Yulan & Wallace, Stein W. & Shen, Bin & Choi, Tsan-Ming, 2015. "Service supply chain management: A review of operational models," European Journal of Operational Research, Elsevier, vol. 247(3), pages 685-698.
    9. Tamás Bányai & Béla Illés & Miklós Gubán & Ákos Gubán & Fabian Schenk & Ágota Bányai, 2019. "Optimization of Just-In-Sequence Supply: A Flower Pollination Algorithm-Based Approach," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
    10. V. Van Peteghem & M. Vanhoucke, 2009. "Using Resource Scarceness Characteristics to Solve the Multi-Mode Resource-Constrained Project Scheduling Problem," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/595, Ghent University, Faculty of Economics and Business Administration.
    11. HazIr, Öncü & Erel, Erdal & Günalay, Yavuz, 2011. "Robust optimization models for the discrete time/cost trade-off problem," International Journal of Production Economics, Elsevier, vol. 130(1), pages 87-95, March.
    12. Manupati, V.K. & Schoenherr, Tobias & Ramkumar, M. & Panigrahi, Suraj & Sharma, Yash & Mishra, Prakriti, 2022. "Recovery strategies for a disrupted supply chain network: Leveraging blockchain technology in pre- and post-disruption scenarios," International Journal of Production Economics, Elsevier, vol. 245(C).
    13. Liao, Ching-Jong & Shyu, Cian-Ci & Tseng, Chao-Tang, 2009. "A least flexibility first heuristic to coordinate setups in a two- or three-stage supply chain," International Journal of Production Economics, Elsevier, vol. 117(1), pages 127-135, January.
    14. Li, Mo & Guo, Ping, 2015. "A coupled random fuzzy two-stage programming model for crop area optimization—A case study of the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 155(C), pages 53-66.
    15. Costantino, Nicola & Dotoli, Mariagrazia & Falagario, Marco & Fanti, Maria Pia & Mangini, Agostino Marcello, 2012. "A model for supply management of agile manufacturing supply chains," International Journal of Production Economics, Elsevier, vol. 135(1), pages 451-457.
    16. Javier Panadero & Jana Doering & Renatas Kizys & Angel A. Juan & Angels Fito, 2020. "A variable neighborhood search simheuristic for project portfolio selection under uncertainty," Journal of Heuristics, Springer, vol. 26(3), pages 353-375, June.
    17. Ma, Jun & Nault, Barrie R. & Tu, Yiliu (Paul), 2023. "Customer segmentation, pricing, and lead time decisions: A stochastic-user-equilibrium perspective," International Journal of Production Economics, Elsevier, vol. 264(C).
    18. Fragapane, Giuseppe & de Koster, René & Sgarbossa, Fabio & Strandhagen, Jan Ola, 2021. "Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 294(2), pages 405-426.
    19. Ziyang Li & Qianwei Ying & Wu Yan & Chenjun Fan, 2022. "Does just‐in‐time adoption have an impact on corporate innovation: evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 62(S1), pages 1599-1635, April.
    20. Peteghem, Vincent Van & Vanhoucke, Mario, 2010. "A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 201(2), pages 409-418, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:123:y:2010:i:1:p:31-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.