IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v54y2016i16p4723-4743.html
   My bibliography  Save this article

A scatter search for the extended resource renting problem

Author

Listed:
  • Len Vandenheede
  • Mario Vanhoucke
  • Broos Maenhout

Abstract

In this paper, the extended Resource Renting Problem (RRP/extended) is presented. The RRP/extended is a time-constrained project scheduling problem, in which the total project cost is minimised. In the RRP/extended, this total project cost is determined by a number of extra costs, which are defined in this paper. These costs are based on the costs that are used in the traditional Resource Renting Problem and the Total Adjustment Cost Problem. Therefore, the RRP/extended represents a union of these two problems. To solve the RRP/extended, a scatter search is developed. The building blocks of this scatter search are specifically designed for the RRP/extended. We introduce two crossovers and an improvement method. The efficiency of these building blocks will be shown in the paper. Furthermore, a sensitivity analysis is presented in which the five costs have diverse values.

Suggested Citation

  • Len Vandenheede & Mario Vanhoucke & Broos Maenhout, 2016. "A scatter search for the extended resource renting problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4723-4743, August.
  • Handle: RePEc:taf:tprsxx:v:54:y:2016:i:16:p:4723-4743
    DOI: 10.1080/00207543.2015.1064177
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2015.1064177
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2015.1064177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lova, Antonio & Tormos, Pilar & Cervantes, Mariamar & Barber, Federico, 2009. "An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes," International Journal of Production Economics, Elsevier, vol. 117(2), pages 302-316, February.
    2. Debels, Dieter & De Reyck, Bert & Leus, Roel & Vanhoucke, Mario, 2006. "A hybrid scatter search/electromagnetism meta-heuristic for project scheduling," European Journal of Operational Research, Elsevier, vol. 169(2), pages 638-653, March.
    3. Vanhoucke, Mario & Coelho, Jose & Debels, Dieter & Maenhout, Broos & Tavares, Luis V., 2008. "An evaluation of the adequacy of project network generators with systematically sampled networks," European Journal of Operational Research, Elsevier, vol. 187(2), pages 511-524, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Briskorn, Dirk & Davari, Morteza & Matuschke, Jannik, 2021. "Single-machine scheduling with an external resource," European Journal of Operational Research, Elsevier, vol. 293(2), pages 457-468.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilkyeong Moon & Sanghyup Lee & Moonsoo Shin & Kwangyeol Ryu, 2016. "Evolutionary resource assignment for workload-based production scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 375-388, April.
    2. Kadri, Roubila Lilia & Boctor, Fayez F., 2018. "An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case," European Journal of Operational Research, Elsevier, vol. 265(2), pages 454-462.
    3. V. Van Peteghem & M. Vanhoucke, 2009. "Using Resource Scarceness Characteristics to Solve the Multi-Mode Resource-Constrained Project Scheduling Problem," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/595, Ghent University, Faculty of Economics and Business Administration.
    4. Peteghem, Vincent Van & Vanhoucke, Mario, 2010. "A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 201(2), pages 409-418, March.
    5. Van Peteghem, Vincent & Vanhoucke, Mario, 2014. "An experimental investigation of metaheuristics for the multi-mode resource-constrained project scheduling problem on new dataset instances," European Journal of Operational Research, Elsevier, vol. 235(1), pages 62-72.
    6. Coelho, José & Vanhoucke, Mario, 2011. "Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers," European Journal of Operational Research, Elsevier, vol. 213(1), pages 73-82, August.
    7. Leyman, Pieter & Vanhoucke, Mario, 2017. "Capital- and resource-constrained project scheduling with net present value optimization," European Journal of Operational Research, Elsevier, vol. 256(3), pages 757-776.
    8. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustín Barrios-Sarmiento, 2022. "An adaptative bacterial foraging optimization algorithm for solving the MRCPSP with discounted cash flows," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 221-248, July.
    9. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustin Barrios-Sarmiento, 2021. "A memetic algorithm to address the multi-node resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 24(4), pages 413-429, August.
    10. Ranjbar, Mohammad & De Reyck, Bert & Kianfar, Fereydoon, 2009. "A hybrid scatter search for the discrete time/resource trade-off problem in project scheduling," European Journal of Operational Research, Elsevier, vol. 193(1), pages 35-48, February.
    11. Vanhoucke, Mario & Maenhout, Broos, 2009. "On the characterization and generation of nurse scheduling problem instances," European Journal of Operational Research, Elsevier, vol. 196(2), pages 457-467, July.
    12. Ünsal-Altuncan, Izel & Vanhoucke, Mario, 2024. "A hybrid forecasting model to predict the duration and cost performance of projects with Bayesian Networks," European Journal of Operational Research, Elsevier, vol. 315(2), pages 511-527.
    13. Snauwaert, Jakob & Vanhoucke, Mario, 2023. "A classification and new benchmark instances for the multi-skilled resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 307(1), pages 1-19.
    14. Zhenyuan Liu & Lei Xiao & Jing Tian, 2016. "An activity-list-based nested partitions algorithm for resource-constrained project scheduling," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4744-4758, August.
    15. HazIr, Öncü & Erel, Erdal & Günalay, Yavuz, 2011. "Robust optimization models for the discrete time/cost trade-off problem," International Journal of Production Economics, Elsevier, vol. 130(1), pages 87-95, March.
    16. Rahman Torba & Stéphane Dauzère-Pérès & Claude Yugma & Cédric Gallais & Juliette Pouzet, 2024. "Solving a real-life multi-skill resource-constrained multi-project scheduling problem," Annals of Operations Research, Springer, vol. 338(1), pages 69-114, July.
    17. Wauters, Mathieu & Vanhoucke, Mario, 2017. "A Nearest Neighbour extension to project duration forecasting with Artificial Intelligence," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1097-1111.
    18. T. Meersman & B. Maenhout, 2022. "Multi-objective optimisation for constructing cyclic appointment schedules for elective and urgent patients," Annals of Operations Research, Springer, vol. 312(2), pages 909-948, May.
    19. Guo, Weikang & Vanhoucke, Mario & Coelho, José, 2023. "A prediction model for ranking branch-and-bound procedures for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 579-595.
    20. Xabier A. Martin & Rosa Herrero & Angel A. Juan & Javier Panadero, 2024. "An Agile Adaptive Biased-Randomized Discrete-Event Heuristic for the Resource-Constrained Project Scheduling Problem," Mathematics, MDPI, vol. 12(12), pages 1-21, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:54:y:2016:i:16:p:4723-4743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.