IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v121y2009i2p464-473.html
   My bibliography  Save this article

Blood platelet production with breaks: optimization by SDP and simulation

Author

Listed:
  • Haijema, René
  • van Dijk, Nico
  • van der Wal, Jan
  • Smit Sibinga, Cees

Abstract

The production and inventory management of blood products at blood banks and hospitals is a problem of general human interest. As a shortage may put lives at risk, shortages are to be kept to a minimum. As the supply is voluntary and costly, any spill of unused blood (products) is also to be minimized. Blood platelets (thrombocytes), which are the most expensive and perishable blood product, have the complication of a limited "shelf life" of only 5-7 days. A general figure in the Western world (the USA and Western Europe) for the spill of blood platelets is in the order of 15-20%. A combined new approach is therefore presented which combines stochastic dynamic programming (SDP) and simulation to provide: (i) Practical simple order-up-to rules that are nearly optimal. (ii) Formal theoretical support.The approach has been applied to a Dutch regional Blood bank. Numerical results show a significant reduction of the figures from: 1% to 1[per mille sign] for shortages; 20% to 1% for spill. A practical question for blood bank managers that still remains is: "How to anticipate irregular production breaks like at Easter and Christmas?" The present paper therefore will extend the combined SDP-Simulation approach to include such breaks. The main findings are: - Also for these breaks a simple order-up-to rule remains to be nearly optimal. - Also for these breaks the outdating and shortages can be kept less than 1%. - The (stationary) periods with production and the (non-stationary) breaks without can be integrated.The approach thus seems suitable for practical implementation.

Suggested Citation

  • Haijema, René & van Dijk, Nico & van der Wal, Jan & Smit Sibinga, Cees, 2009. "Blood platelet production with breaks: optimization by SDP and simulation," International Journal of Production Economics, Elsevier, vol. 121(2), pages 464-473, October.
  • Handle: RePEc:eee:proeco:v:121:y:2009:i:2:p:464-473
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(07)00065-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kanchanasuntorn, Kanchana & Techanitisawad, Anulark, 2006. "An approximate periodic model for fixed-life perishable products in a two-echelon inventory-distribution system," International Journal of Production Economics, Elsevier, vol. 100(1), pages 101-115, March.
    2. William P. Pierskalla & Chris D. Roach, 1972. "Optimal Issuing Policies for Perishable Inventory," Management Science, INFORMS, vol. 18(11), pages 603-614, July.
    3. Steven Nahmias, 1982. "Perishable Inventory Theory: A Review," Operations Research, INFORMS, vol. 30(4), pages 680-708, August.
    4. Gregory P. Prastacos, 1984. "Blood Inventory Management: An Overview of Theory and Practice," Management Science, INFORMS, vol. 30(7), pages 777-800, July.
    5. van Donselaar, K. & van Woensel, T. & Broekmeulen, R. & Fransoo, J., 2006. "Inventory control of perishables in supermarkets," International Journal of Production Economics, Elsevier, vol. 104(2), pages 462-472, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andres F. Osorio & Sally C. Brailsford & Honora K. Smith & Sonia P. Forero-Matiz & Bernardo A. Camacho-Rodríguez, 2017. "Simulation-optimization model for production planning in the blood supply chain," Health Care Management Science, Springer, vol. 20(4), pages 548-564, December.
    2. Dehghani, Maryam & Abbasi, Babak, 2018. "An age-based lateral-transshipment policy for perishable items," International Journal of Production Economics, Elsevier, vol. 198(C), pages 93-103.
    3. Kouki, Chaaben & Jemaï, Zied & Minner, Stefan, 2015. "A lost sales (r, Q) inventory control model for perishables with fixed lifetime and lead time," International Journal of Production Economics, Elsevier, vol. 168(C), pages 143-157.
    4. Lowalekar, Harshal & Ravi, R. Raghavendra, 2017. "Revolutionizing blood bank inventory management using the TOC thinking process: An Indian case study," International Journal of Production Economics, Elsevier, vol. 186(C), pages 89-122.
    5. Duan, Qinglin & Liao, T. Warren, 2014. "Optimization of blood supply chain with shortened shelf lives and ABO compatibility," International Journal of Production Economics, Elsevier, vol. 153(C), pages 113-129.
    6. Puranam, Kartikeya & Novak, David C. & Lucas, Marilyn T. & Fung, Mark, 2017. "Managing blood inventory with multiple independent sources of supply," European Journal of Operational Research, Elsevier, vol. 259(2), pages 500-511.
    7. Haijema, René & Minner, Stefan, 2019. "Improved ordering of perishables: The value of stock-age information," International Journal of Production Economics, Elsevier, vol. 209(C), pages 316-324.
    8. Turgay Ayer & Can Zhang & Chenxi Zeng & Chelsea C. White III & V. Roshan Joseph, 2019. "Analysis and Improvement of Blood Collection Operations," Service Science, INFORMS, vol. 21(1), pages 29-46, January.
    9. Zahra Azadi & Harsha Gangammanavar & Sandra Eksioglu, 2020. "Developing childhood vaccine administration and inventory replenishment policies that minimize open vial wastage," Annals of Operations Research, Springer, vol. 292(1), pages 215-247, September.
    10. Dehghani, Maryam & Abbasi, Babak & Oliveira, Fabricio, 2021. "Proactive transshipment in the blood supply chain: A stochastic programming approach," Omega, Elsevier, vol. 98(C).
    11. Gunpinar, Serkan & Centeno, Grisselle, 2016. "An integer programming approach to the bloodmobile routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 94-115.
    12. Kouki, Chaaben & Jouini, Oualid, 2015. "On the effect of lifetime variability on the performance of inventory systems," International Journal of Production Economics, Elsevier, vol. 167(C), pages 23-34.
    13. Pauls-Worm, Karin G.J. & Hendrix, Eligius M.T. & Alcoba, Alejandro G. & Haijema, René, 2016. "Order quantities for perishable inventory control with non-stationary demand and a fill rate constraint," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 238-246.
    14. Pauls-Worm, Karin G.J. & Hendrix, Eligius M.T. & Haijema, René & van der Vorst, Jack G.A.J., 2014. "An MILP approximation for ordering perishable products with non-stationary demand and service level constraints," International Journal of Production Economics, Elsevier, vol. 157(C), pages 133-146.
    15. Fredrik Ødegaard & Sudipendra Nath Roy, 2021. "Heuristic-based allocation of supply constrained blood platelets in emerging economies," Journal of Heuristics, Springer, vol. 27(5), pages 719-745, October.
    16. Duan, Qinglin & Liao, T. Warren, 2013. "A new age-based replenishment policy for supply chain inventory optimization of highly perishable products," International Journal of Production Economics, Elsevier, vol. 145(2), pages 658-671.
    17. Beliën, Jeroen & Forcé, Hein, 2012. "Supply chain management of blood products: A literature review," European Journal of Operational Research, Elsevier, vol. 217(1), pages 1-16.
    18. Haijema, René, 2013. "A new class of stock-level dependent ordering policies for perishables with a short maximum shelf life," International Journal of Production Economics, Elsevier, vol. 143(2), pages 434-439.
    19. Wang, Ke-Ming & Ma, Zu-Jun, 2015. "Age-based policy for blood transshipment during blood shortage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 166-183.
    20. Mahsa Pouraliakbari-Mamaghani & Ali Ghodratnama & Seyed Hamid Reza Pasandideh & Ahmed Saif, 2022. "A robust possibilistic programming approach for blood supply chain network design in disaster relief considering congestion," Operational Research, Springer, vol. 22(3), pages 1987-2032, July.
    21. Gilani Larimi, Niloofar & Yaghoubi, Saeed & Hosseini-Motlagh, Seyyed-Mahdi, 2019. "Itemized platelet supply chain with lateral transshipment under uncertainty evaluating inappropriate output in laboratories," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    22. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Cheraghi, Sara, 2020. "Robust and stable flexible blood supply chain network design under motivational initiatives," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    23. van Sambeeck, J.H.J. & van Brummelen, S.P.J. & van Dijk, N.M. & Janssen, M.P., 2022. "Optimal blood issuing by comprehensive matching," European Journal of Operational Research, Elsevier, vol. 296(1), pages 240-253.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ensafian, Hamidreza & Yaghoubi, Saeed, 2017. "Robust optimization model for integrated procurement, production and distribution in platelet supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 32-55.
    2. Gunpinar, Serkan & Centeno, Grisselle, 2016. "An integer programming approach to the bloodmobile routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 94-115.
    3. Duan, Qinglin & Liao, T. Warren, 2014. "Optimization of blood supply chain with shortened shelf lives and ABO compatibility," International Journal of Production Economics, Elsevier, vol. 153(C), pages 113-129.
    4. Beliën, Jeroen & Forcé, Hein, 2012. "Supply chain management of blood products: A literature review," European Journal of Operational Research, Elsevier, vol. 217(1), pages 1-16.
    5. Madhukar Nagare & Pankaj Dutta & Pravin Suryawanshi, 2020. "Optimal procurement and discount pricing for single-period non-instantaneous deteriorating products with promotional efforts," Operational Research, Springer, vol. 20(1), pages 89-117, March.
    6. Bakker, Monique & Riezebos, Jan & Teunter, Ruud H., 2012. "Review of inventory systems with deterioration since 2001," European Journal of Operational Research, Elsevier, vol. 221(2), pages 275-284.
    7. Kouki, Chaaben & Sahin, Evren & Jemaï, Zied & Dallery, Yves, 2013. "Assessing the impact of perishability and the use of time temperature technologies on inventory management," International Journal of Production Economics, Elsevier, vol. 143(1), pages 72-85.
    8. Borga Deniz & Itir Karaesmen & Alan Scheller-Wolf, 2010. "Managing Perishables with Substitution: Inventory Issuance and Replenishment Heuristics," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 319-329, July.
    9. Puranam, Kartikeya & Novak, David C. & Lucas, Marilyn T. & Fung, Mark, 2017. "Managing blood inventory with multiple independent sources of supply," European Journal of Operational Research, Elsevier, vol. 259(2), pages 500-511.
    10. Liming Liu & Zhaotong Lian, 1999. "(s, S) Continuous Review Models for Products with Fixed Lifetimes," Operations Research, INFORMS, vol. 47(1), pages 150-158, February.
    11. van Donselaar, Karel H. & Broekmeulen, Rob A.C.M., 2012. "Approximations for the relative outdating of perishable products by combining stochastic modeling, simulation and regression modeling," International Journal of Production Economics, Elsevier, vol. 140(2), pages 660-669.
    12. Chiu, Huan Neng, 1995. "A heuristic (R, T) periodic review perishable inventory model with lead times," International Journal of Production Economics, Elsevier, vol. 42(1), pages 1-15, November.
    13. Haijema, Rene, 2014. "Optimal ordering, issuance and disposal policies for inventory management of perishable products," International Journal of Production Economics, Elsevier, vol. 157(C), pages 158-169.
    14. Stratos Ioannidis & Oualid Jouini & Angelos Economopoulos & Vassilis Kouikoglou, 2013. "Control policies for single-stage production systems with perishable inventory and customer impatience," Annals of Operations Research, Springer, vol. 209(1), pages 115-138, October.
    15. Li, Jian & Edwin Cheng, T.C. & Wang, Shouyang, 2007. "Analysis of postponement strategy for perishable items by EOQ-based models," International Journal of Production Economics, Elsevier, vol. 107(1), pages 31-38, May.
    16. K Katsaliaki & S C Brailsford, 2007. "Using simulation to improve the blood supply chain," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 219-227, February.
    17. Lowalekar, Harshal & Ravi, R. Raghavendra, 2017. "Revolutionizing blood bank inventory management using the TOC thinking process: An Indian case study," International Journal of Production Economics, Elsevier, vol. 186(C), pages 89-122.
    18. Dehghani, Maryam & Abbasi, Babak & Oliveira, Fabricio, 2021. "Proactive transshipment in the blood supply chain: A stochastic programming approach," Omega, Elsevier, vol. 98(C).
    19. Ketzenberg, Michael & Gaukler, Gary & Salin, Victoria, 2018. "Expiration dates and order quantities for perishables," European Journal of Operational Research, Elsevier, vol. 266(2), pages 569-584.
    20. Anna Nagurney & Amir Masoumi & Min Yu, 2012. "Supply chain network operations management of a blood banking system with cost and risk minimization," Computational Management Science, Springer, vol. 9(2), pages 205-231, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:121:y:2009:i:2:p:464-473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.