IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v145y2013i2p658-671.html
   My bibliography  Save this article

A new age-based replenishment policy for supply chain inventory optimization of highly perishable products

Author

Listed:
  • Duan, Qinglin
  • Liao, T. Warren

Abstract

A simulation optimization framework is proposed for supply chain inventory management of highly perishable products. A new replenishment policy based on old inventory ratio is developed, hence called OIR policy. It is an age-based policy using only partial age information to measure the freshness of the entire inventory. The efficiency of the new policy is evaluated in detail for a single-vendor-multi-buyer platelet (with a limited shelf life of 5 days) supply chain. The inventory objective is to minimize the expected system outdate rate under a predetermined maximal allowable shortage level. The new OIR policy is compared with two existing order-up-to policies: one is the order-up-to policy without age consideration; the other one is the “EWA” policy developed by Broekmeulen and van Donselaar (2009). The three policies are compared under both decentralized and centralized controls for different levels of the fillrate constraint. The computational results show that adopting centralized control over the whole platelet supply chain greatly helps in reducing the system expected outdate rate from 19.6% down to 1.04% on average while keeping sufficiently high fill rate at each entity. The two policies with age consideration are generally better than the policy without age consideration under both control strategies. This is particularly true for decentralized control. The new OIR policy is recommended because it is the best among all three, consistently yielding good results in all cases studied.

Suggested Citation

  • Duan, Qinglin & Liao, T. Warren, 2013. "A new age-based replenishment policy for supply chain inventory optimization of highly perishable products," International Journal of Production Economics, Elsevier, vol. 145(2), pages 658-671.
  • Handle: RePEc:eee:proeco:v:145:y:2013:i:2:p:658-671
    DOI: 10.1016/j.ijpe.2013.05.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527313002478
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2013.05.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Morris A. Cohen, 1976. "Analysis of Single Critical Number Ordering Policies for Perishable Inventories," Operations Research, INFORMS, vol. 24(4), pages 726-741, August.
    2. Haijema, René & van Dijk, Nico & van der Wal, Jan & Smit Sibinga, Cees, 2009. "Blood platelet production with breaks: optimization by SDP and simulation," International Journal of Production Economics, Elsevier, vol. 121(2), pages 464-473, October.
    3. Goyal, S. K. & Giri, B. C., 2001. "Recent trends in modeling of deteriorating inventory," European Journal of Operational Research, Elsevier, vol. 134(1), pages 1-16, October.
    4. Gregory P. Prastacos, 1984. "Blood Inventory Management: An Overview of Theory and Practice," Management Science, INFORMS, vol. 30(7), pages 777-800, July.
    5. Duan, Qinglin & Warren Liao, T., 2013. "Optimization of replenishment policies for decentralized and centralized capacitated supply chains under various demands," International Journal of Production Economics, Elsevier, vol. 142(1), pages 194-204.
    6. Dan Chazan & Shmuel Gal, 1977. "A Markovian Model for a Perishable Product Inventory," Management Science, INFORMS, vol. 23(5), pages 512-521, January.
    7. Purushottaman Nandakumar & Thomas E. Morton, 1993. "Near Myopic Heuristics for the Fixed-Life Perishability Problem," Management Science, INFORMS, vol. 39(12), pages 1490-1498, December.
    8. Deming Zhou & Lawrence C. Leung & William P. Pierskalla, 2011. "Inventory Management of Platelets in Hospitals: Optimal Inventory Policy for Perishable Products with Regular and Optional Expedited Replenishments," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 420-438, October.
    9. Mark Ferguson & Michael E. Ketzenberg, 2006. "Information Sharing to Improve Retail Product Freshness of Perishables," Production and Operations Management, Production and Operations Management Society, vol. 15(1), pages 57-73, March.
    10. Bakker, Monique & Riezebos, Jan & Teunter, Ruud H., 2012. "Review of inventory systems with deterioration since 2001," European Journal of Operational Research, Elsevier, vol. 221(2), pages 275-284.
    11. Tekin, Eylem & Gurler, Ulku & Berk, Emre, 2001. "Age-based vs. stock level control policies for a perishable inventory system," European Journal of Operational Research, Elsevier, vol. 134(2), pages 309-329, October.
    12. Brant E. Fries, 1975. "Optimal Ordering Policy for a Perishable Commodity with Fixed Lifetime," Operations Research, INFORMS, vol. 23(1), pages 46-61, February.
    13. Beliën, Jeroen & Forcé, Hein, 2012. "Supply chain management of blood products: A literature review," European Journal of Operational Research, Elsevier, vol. 217(1), pages 1-16.
    14. Steven Nahmias, 1976. "Myopic Approximations for the Perishable Inventory Problem," Management Science, INFORMS, vol. 22(9), pages 1002-1008, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Puranam, Kartikeya & Novak, David C. & Lucas, Marilyn T. & Fung, Mark, 2017. "Managing blood inventory with multiple independent sources of supply," European Journal of Operational Research, Elsevier, vol. 259(2), pages 500-511.
    2. Wang, Ke-Ming & Ma, Zu-Jun, 2015. "Age-based policy for blood transshipment during blood shortage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 166-183.
    3. Duan, Qinglin & Liao, T. Warren, 2014. "Optimization of blood supply chain with shortened shelf lives and ABO compatibility," International Journal of Production Economics, Elsevier, vol. 153(C), pages 113-129.
    4. Dehghani, Maryam & Abbasi, Babak & Oliveira, Fabricio, 2021. "Proactive transshipment in the blood supply chain: A stochastic programming approach," Omega, Elsevier, vol. 98(C).
    5. Xiuli Chao & Xiting Gong & Cong Shi & Huanan Zhang, 2015. "Approximation Algorithms for Perishable Inventory Systems," Operations Research, INFORMS, vol. 63(3), pages 585-601, June.
    6. van Donselaar, Karel H. & Broekmeulen, Rob A.C.M., 2012. "Approximations for the relative outdating of perishable products by combining stochastic modeling, simulation and regression modeling," International Journal of Production Economics, Elsevier, vol. 140(2), pages 660-669.
    7. Kopach, Renata & Balcioglu, Baris & Carter, Michael, 2008. "Tutorial on constructing a red blood cell inventory management system with two demand rates," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1051-1059, March.
    8. Lowalekar, Harshal & Ravi, R. Raghavendra, 2017. "Revolutionizing blood bank inventory management using the TOC thinking process: An Indian case study," International Journal of Production Economics, Elsevier, vol. 186(C), pages 89-122.
    9. Minner, Stefan & Transchel, Sandra, 2017. "Order variability in perishable product supply chains," European Journal of Operational Research, Elsevier, vol. 260(1), pages 93-107.
    10. Kouki, Chaaben & Jouini, Oualid, 2015. "On the effect of lifetime variability on the performance of inventory systems," International Journal of Production Economics, Elsevier, vol. 167(C), pages 23-34.
    11. Liming Liu & Zhaotong Lian, 1999. "(s, S) Continuous Review Models for Products with Fixed Lifetimes," Operations Research, INFORMS, vol. 47(1), pages 150-158, February.
    12. William L. Cooper, 2001. "Pathwise Properties and Performance Bounds for a Perishable Inventory System," Operations Research, INFORMS, vol. 49(3), pages 455-466, June.
    13. Chiu, Huan Neng, 1995. "A heuristic (R, T) periodic review perishable inventory model with lead times," International Journal of Production Economics, Elsevier, vol. 42(1), pages 1-15, November.
    14. Civelek, Ismail & Karaesmen, Itir & Scheller-Wolf, Alan, 2015. "Blood platelet inventory management with protection levels," European Journal of Operational Research, Elsevier, vol. 243(3), pages 826-838.
    15. Lian, Zhaotong & Liu, Xiaoming & Zhao, Ning, 2009. "A perishable inventory model with Markovian renewal demands," International Journal of Production Economics, Elsevier, vol. 121(1), pages 176-182, September.
    16. Haijema, René & Minner, Stefan, 2019. "Improved ordering of perishables: The value of stock-age information," International Journal of Production Economics, Elsevier, vol. 209(C), pages 316-324.
    17. Gorria, Carlos & Lezaun, Mikel & López, F. Javier, 2022. "Performance measures of nonstationary inventory models for perishable products under the EWA policy," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1137-1150.
    18. Kouki, Chaaben & Sahin, Evren & Jemaï, Zied & Dallery, Yves, 2013. "Assessing the impact of perishability and the use of time temperature technologies on inventory management," International Journal of Production Economics, Elsevier, vol. 143(1), pages 72-85.
    19. Haijema, René & Minner, Stefan, 2016. "Stock-level dependent ordering of perishables: A comparison of hybrid base-stock and constant order policies," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 215-225.
    20. Kouki, Chaaben & Jemaï, Zied & Minner, Stefan, 2015. "A lost sales (r, Q) inventory control model for perishables with fixed lifetime and lead time," International Journal of Production Economics, Elsevier, vol. 168(C), pages 143-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:145:y:2013:i:2:p:658-671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.