IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v114y2008i2p793-804.html
   My bibliography  Save this article

An economic analysis of the optimal information security investment in the case of a risk-averse firm

Author

Listed:
  • Derrick Huang, C.
  • Hu, Qing
  • Behara, Ravi S.

Abstract

No abstract is available for this item.

Suggested Citation

  • Derrick Huang, C. & Hu, Qing & Behara, Ravi S., 2008. "An economic analysis of the optimal information security investment in the case of a risk-averse firm," International Journal of Production Economics, Elsevier, vol. 114(2), pages 793-804, August.
  • Handle: RePEc:eee:proeco:v:114:y:2008:i:2:p:793-804
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(08)00119-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Menoncin, Francesco, 2002. "Optimal portfolio and background risk: an exact and an approximated solution," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 249-265, October.
    2. Sid Browne, 1995. "Optimal Investment Policies for a Firm With a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 937-958, November.
    3. Jay Kesan & Rupterto Majuca & William Yurcik, "undated". "The Economic Case for Cyberinsurance," University of Illinois Legal Working Paper Series uiuclwps-1001, University of Illinois College of Law.
    4. Fishburn, Peter C, 1989. "Retrospective on the Utility Theory of von Neumann and Morgenstern," Journal of Risk and Uncertainty, Springer, vol. 2(2), pages 127-157, June.
    5. Kjell Hausken, 2006. "Returns to information security investment: The effect of alternative information security breach functions on optimal investment and sensitivity to vulnerability," Information Systems Frontiers, Springer, vol. 8(5), pages 338-349, December.
    6. Stapleton, R C & Subrahmanyam, M G, 1990. "Risk Aversion and the Intertemporal Behavior of Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 677-693.
    7. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    8. Huseyin Cavusoglu & Birendra Mishra & Srinivasan Raghunathan, 2005. "The Value of Intrusion Detection Systems in Information Technology Security Architecture," Information Systems Research, INFORMS, vol. 16(1), pages 28-46, March.
    9. Detmar W. Straub, 1990. "Effective IS Security: An Empirical Study," Information Systems Research, INFORMS, vol. 1(3), pages 255-276, September.
    10. Milton Friedman & L. J. Savage, 1952. "The Expected-Utility Hypothesis and the Measurability of Utility," Journal of Political Economy, University of Chicago Press, vol. 60(6), pages 463-463.
    11. Henderson, Vicky & Hobson, David G., 2002. "Real options with constant relative risk aversion," Journal of Economic Dynamics and Control, Elsevier, vol. 27(2), pages 329-355, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing Gao & Weijun Zhong, 2015. "Information security investment for competitive firms with hacker behavior and security requirements," Annals of Operations Research, Springer, vol. 235(1), pages 277-300, December.
    2. Kaur, Harpreet & Gupta, Mahima & Singh, Surya Prakash, 2024. "Integrated model to optimize supplier selection and investments for cyber resilience in digital supply chains," International Journal of Production Economics, Elsevier, vol. 275(C).
    3. Yong Wu & Gengzhong Feng & Richard Y. K. Fung, 2018. "Comparison of information security decisions under different security and business environments," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(5), pages 747-761, May.
    4. Mazaher Kianpour & Stewart J. Kowalski & Harald Øverby, 2021. "Systematically Understanding Cybersecurity Economics: A Survey," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    5. Huang, C. Derrick & Behara, Ravi S., 2013. "Economics of information security investment in the case of concurrent heterogeneous attacks with budget constraints," International Journal of Production Economics, Elsevier, vol. 141(1), pages 255-268.
    6. Yong Wu & Mengyao Xu & Dong Cheng & Tao Dai, 2022. "Information Security Strategies for Information-Sharing Firms Considering a Strategic Hacker," Decision Analysis, INFORMS, vol. 19(2), pages 99-122, June.
    7. Yong Wu & Junlin Duan & Tao Dai & Dong Cheng, 2020. "Managing Security Outsourcing in the Presence of Strategic Hackers," Decision Analysis, INFORMS, vol. 17(3), pages 235-259, September.
    8. Xing Gao & Weijun Zhong & Shue Mei, 2015. "Security investment and information sharing under an alternative security breach probability function," Information Systems Frontiers, Springer, vol. 17(2), pages 423-438, April.
    9. Alessandro Fedele & Cristian Roner, 2022. "Dangerous games: A literature review on cybersecurity investments," Journal of Economic Surveys, Wiley Blackwell, vol. 36(1), pages 157-187, February.
    10. Mayadunne, Sanjaya & Park, Sungjune, 2016. "An economic model to evaluate information security investment of risk-taking small and medium enterprises," International Journal of Production Economics, Elsevier, vol. 182(C), pages 519-530.
    11. Xiaofei Qian & Xinbao Liu & Jun Pei & Panos M. Pardalos & Lin Liu, 2017. "A game-theoretic analysis of information security investment for multiple firms in a network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1290-1305, October.
    12. Yosra Miaoui & Noureddine Boudriga, 2019. "Enterprise security investment through time when facing different types of vulnerabilities," Information Systems Frontiers, Springer, vol. 21(2), pages 261-300, April.
    13. David Iliaev & Sigal Oren & Ella Segev, 2023. "A Tullock-contest-based approach for cyber security investments," Annals of Operations Research, Springer, vol. 320(1), pages 61-84, January.
    14. Jhih-Hua Jhang-Li & Cheng-Wei Chang, 2017. "Analyzing the operation of cloud supply chain: adoption barriers and business model," Electronic Commerce Research, Springer, vol. 17(4), pages 627-660, December.
    15. Xiaotong Li & Qianyao Xue, 2021. "An economic analysis of information security investment decision making for substitutable enterprises," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(5), pages 1306-1316, July.
    16. Xiaofei Qian & Jun Pei & Xinbao Liu & Mi Zhou & Panos M. Pardalos, 2019. "Information security decisions for two firms in a market with different types of customers," Journal of Combinatorial Optimization, Springer, vol. 38(4), pages 1263-1285, November.
    17. Xing Gao & Weijun Zhong, 2016. "Economic incentives in security information sharing: the effects of market structures," Information Technology and Management, Springer, vol. 17(4), pages 361-377, December.
    18. Yosra Miaoui & Noureddine Boudriga, 0. "Enterprise security investment through time when facing different types of vulnerabilities," Information Systems Frontiers, Springer, vol. 0, pages 1-40.
    19. Liao, Chun-Hsiung & Chen, Chun-Wei, 2014. "Network externality and incentive to invest in network security," Economic Modelling, Elsevier, vol. 36(C), pages 398-404.
    20. Lu Xu & Yanhui Li & Jing Fu, 2019. "Cybersecurity Investment Allocation for a Multi-Branch Firm: Modeling and Optimization," Mathematics, MDPI, vol. 7(7), pages 1-20, July.
    21. Xinbao Liu & Xiaofei Qian & Jun Pei & Panos M. Pardalos, 2018. "Security investment and information sharing in the market of complementary firms: impact of complementarity degree and industry size," Journal of Global Optimization, Springer, vol. 70(2), pages 413-436, February.
    22. Martin (Dae Youp) Kang & Anat Hovav, 2020. "Benchmarking Methodology for Information Security Policy (BMISP): Artifact Development and Evaluation," Information Systems Frontiers, Springer, vol. 22(1), pages 221-242, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yosra Miaoui & Noureddine Boudriga, 2019. "Enterprise security investment through time when facing different types of vulnerabilities," Information Systems Frontiers, Springer, vol. 21(2), pages 261-300, April.
    2. Yosra Miaoui & Noureddine Boudriga, 0. "Enterprise security investment through time when facing different types of vulnerabilities," Information Systems Frontiers, Springer, vol. 0, pages 1-40.
    3. Fang Fang & Manoj Parameswaran & Xia Zhao & Andrew B. Whinston, 2014. "An economic mechanism to manage operational security risks for inter-organizational information systems," Information Systems Frontiers, Springer, vol. 16(3), pages 399-416, July.
    4. Gu, Ailing & Guo, Xianping & Li, Zhongfei & Zeng, Yan, 2012. "Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 674-684.
    5. Shihao Zhu & Jingtao Shi, 2019. "Optimal Reinsurance and Investment Strategies under Mean-Variance Criteria: Partial and Full Information," Papers 1906.08410, arXiv.org, revised Jun 2020.
    6. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    7. Yi, Bo & Li, Zhongfei & Viens, Frederi G. & Zeng, Yan, 2013. "Robust optimal control for an insurer with reinsurance and investment under Heston’s stochastic volatility model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 601-614.
    8. Christensen, Bent Jesper & Parra-Alvarez, Juan Carlos & Serrano, Rafael, 2021. "Optimal control of investment, premium and deductible for a non-life insurance company," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 384-405.
    9. Li, Zhongfei & Yao, Jing & Li, Duan, 2010. "Behavior patterns of investment strategies under Roy's safety-first principle," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(2), pages 167-179, May.
    10. Bin Srinidhi & Jia Yan & Giri Kumar Tayi, 2008. "Firm-level Resource Allocation to Information Security in the Presence of Financial Distress," Working Papers 2008-17, School of Economic Sciences, Washington State University.
    11. Diasakos, Theodoros M, 2013. "Comparative Statics of Asset Prices: the effect of other assets' risk," SIRE Discussion Papers 2013-94, Scottish Institute for Research in Economics (SIRE).
    12. Zheng, Xiaoxiao & Zhou, Jieming & Sun, Zhongyang, 2016. "Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 77-87.
    13. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    14. Junna Bi & Jun Cai & Yan Zeng, 2021. "Equilibrium reinsurance-investment strategies with partial information and common shock dependence," Annals of Operations Research, Springer, vol. 307(1), pages 1-24, December.
    15. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    16. J. Cerda-Hernandez & A. Sikov & A. Ramos, 2022. "An optimal investment strategy aimed at maximizing the expected utility across all intermediate capital levels," Papers 2207.02947, arXiv.org, revised Jun 2024.
    17. Li, Yongwu & Li, Zhongfei, 2013. "Optimal time-consistent investment and reinsurance strategies for mean–variance insurers with state dependent risk aversion," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 86-97.
    18. Junna Bi & Qingbin Meng & Yongji Zhang, 2014. "Dynamic mean-variance and optimal reinsurance problems under the no-bankruptcy constraint for an insurer," Annals of Operations Research, Springer, vol. 212(1), pages 43-59, January.
    19. Yan Zhang & Peibiao Zhao & Rufei Ma, 2022. "Robust Optimal Excess-of-Loss Reinsurance and Investment Problem with more General Dependent Claim Risks and Defaultable Risk," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2743-2777, December.
    20. Guan, Guohui & Hu, Jiaqi & Liang, Zongxia, 2022. "Robust equilibrium strategies in a defined benefit pension plan game," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 193-217.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:114:y:2008:i:2:p:793-804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.