IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v70y2018i2d10.1007_s10898-017-0585-y.html
   My bibliography  Save this article

Security investment and information sharing in the market of complementary firms: impact of complementarity degree and industry size

Author

Listed:
  • Xinbao Liu

    (Hefei University of Technology
    Key Laboratory of Process Optimization and Intelligent Decision-Making of Ministry of Education)

  • Xiaofei Qian

    (Hefei University of Technology
    University of Florida)

  • Jun Pei

    (Hefei University of Technology
    University of Florida)

  • Panos M. Pardalos

    (University of Florida)

Abstract

We study a differential game of information security investment and information sharing in a market consisting of n complementary firms. Two game approaches, the non-cooperative game and the totally cooperative game, are employed to investigate the steady state strategy of each firm. Under certain conditions, a unique steady state can be obtained for both games. We find that the steady state security investment and information sharing level are not always less in the non-cooperative game than that in the totally cooperative game. In addition, some theoretical analyses are made on the impacts of the complementarity degree and industry size on firms’ steady state strategies for both games. Finally, some numerical experiments are conducted to give some insights related to the instantaneous profit in the steady state. It can be found that a firm will obtain more instantaneous profit in the steady state of the totally cooperative game than that of the non-cooperative game, which emphasizes the importance of coordinating strategies. The effects of the complementarity degree and industry size on the instantaneous profits in the steady state are also obtained through the numerical experiment results.

Suggested Citation

  • Xinbao Liu & Xiaofei Qian & Jun Pei & Panos M. Pardalos, 2018. "Security investment and information sharing in the market of complementary firms: impact of complementarity degree and industry size," Journal of Global Optimization, Springer, vol. 70(2), pages 413-436, February.
  • Handle: RePEc:spr:jglopt:v:70:y:2018:i:2:d:10.1007_s10898-017-0585-y
    DOI: 10.1007/s10898-017-0585-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-017-0585-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-017-0585-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amanda Eisenga & Travis L. Jones & Walter Rodriguez, 2012. "Investing in IT Security: How to Determine the Maximum Threshold," International Journal of Information Security and Privacy (IJISP), IGI Global, vol. 6(3), pages 75-87, July.
    2. Esther Gal-Or & Anindya Ghose, 2005. "The Economic Incentives for Sharing Security Information," Information Systems Research, INFORMS, vol. 16(2), pages 186-208, June.
    3. Anuj Kumar & Yinliang (Ricky) Tan, 2015. "The Demand Effects of Joint Product Advertising in Online Videos," Management Science, INFORMS, vol. 61(8), pages 1921-1937, August.
    4. Derrick Huang, C. & Hu, Qing & Behara, Ravi S., 2008. "An economic analysis of the optimal information security investment in the case of a risk-averse firm," International Journal of Production Economics, Elsevier, vol. 114(2), pages 793-804, August.
    5. Mukhopadhyay, Samar K. & Yue, Xiaohang & Zhu, Xiaowei, 2011. "A Stackelberg model of pricing of complementary goods under information asymmetry," International Journal of Production Economics, Elsevier, vol. 134(2), pages 424-433, December.
    6. Huang, C. Derrick & Behara, Ravi S., 2013. "Economics of information security investment in the case of concurrent heterogeneous attacks with budget constraints," International Journal of Production Economics, Elsevier, vol. 141(1), pages 255-268.
    7. Yinliang (Ricky) Tan & Janice E. Carrillo, 2017. "Strategic Analysis of the Agency Model for Digital Goods," Production and Operations Management, Production and Operations Management Society, vol. 26(4), pages 724-741, April.
    8. R. Cellini & L. Lambertini, 2003. "Advertising in a Differential Oligopoly Game," Journal of Optimization Theory and Applications, Springer, vol. 116(1), pages 61-81, January.
    9. Xing Gao & Weijun Zhong & Shue Mei, 2014. "A game-theoretic analysis of information sharing and security investment for complementary firms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(11), pages 1682-1691, November.
    10. Yan, Ruiliang & Bandyopadhyay, Subir, 2011. "The profit benefits of bundle pricing of complementary products," Journal of Retailing and Consumer Services, Elsevier, vol. 18(4), pages 355-361.
    11. Gordon, Lawrence A. & Loeb, Martin P. & Lucyshyn, William, 2003. "Sharing information on computer systems security: An economic analysis," Journal of Accounting and Public Policy, Elsevier, vol. 22(6), pages 461-485.
    12. Xing Gao & Weijun Zhong & Shue Mei, 2015. "Security investment and information sharing under an alternative security breach probability function," Information Systems Frontiers, Springer, vol. 17(2), pages 423-438, April.
    13. Xiaofei Qian & Xinbao Liu & Jun Pei & Panos M. Pardalos & Lin Liu, 2017. "A game-theoretic analysis of information security investment for multiple firms in a network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1290-1305, October.
    14. Xing Gao & Weijun Zhong, 2016. "Economic incentives in security information sharing: the effects of market structures," Information Technology and Management, Springer, vol. 17(4), pages 361-377, December.
    15. Hausken, Kjell, 2007. "Information sharing among firms and cyber attacks," Journal of Accounting and Public Policy, Elsevier, vol. 26(6), pages 639-688.
    16. Cellini, Roberto & Lambertini, Luca, 2002. "A differential game approach to investment in product differentiation," Journal of Economic Dynamics and Control, Elsevier, vol. 27(1), pages 51-62, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pengxi Yang & Fei Gao & Hua Zhang, 2021. "Multi-Player Evolutionary Game of Network Attack and Defense Based on System Dynamics," Mathematics, MDPI, vol. 9(23), pages 1-18, November.
    2. Alessandro Fedele & Cristian Roner, 2022. "Dangerous games: A literature review on cybersecurity investments," Journal of Economic Surveys, Wiley Blackwell, vol. 36(1), pages 157-187, February.
    3. Lu Xu & Yanhui Li & Qi Yao, 2022. "Information security investment and purchase decision for personalized products," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(6), pages 2619-2635, September.
    4. Xiaofei Qian & Jun Pei & Xinbao Liu & Mi Zhou & Panos M. Pardalos, 2019. "Information security decisions for two firms in a market with different types of customers," Journal of Combinatorial Optimization, Springer, vol. 38(4), pages 1263-1285, November.
    5. Lu Xu & Yanhui Li & Jing Fu, 2019. "Cybersecurity Investment Allocation for a Multi-Branch Firm: Modeling and Optimization," Mathematics, MDPI, vol. 7(7), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaofei Qian & Jun Pei & Xinbao Liu & Mi Zhou & Panos M. Pardalos, 2019. "Information security decisions for two firms in a market with different types of customers," Journal of Combinatorial Optimization, Springer, vol. 38(4), pages 1263-1285, November.
    2. Xing Gao & Weijun Zhong, 2016. "A differential game approach to security investment and information sharing in a competitive environment," IISE Transactions, Taylor & Francis Journals, vol. 48(6), pages 511-526, June.
    3. Yong Wu & Gengzhong Feng & Richard Y. K. Fung, 2018. "Comparison of information security decisions under different security and business environments," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(5), pages 747-761, May.
    4. Yosra Miaoui & Noureddine Boudriga, 2019. "Enterprise security investment through time when facing different types of vulnerabilities," Information Systems Frontiers, Springer, vol. 21(2), pages 261-300, April.
    5. Yosra Miaoui & Noureddine Boudriga, 0. "Enterprise security investment through time when facing different types of vulnerabilities," Information Systems Frontiers, Springer, vol. 0, pages 1-40.
    6. Xing Gao & Weijun Zhong, 2016. "Economic incentives in security information sharing: the effects of market structures," Information Technology and Management, Springer, vol. 17(4), pages 361-377, December.
    7. Xing Gao & Weijun Zhong, 2015. "Information security investment for competitive firms with hacker behavior and security requirements," Annals of Operations Research, Springer, vol. 235(1), pages 277-300, December.
    8. Xing Gao & Weijun Zhong & Shue Mei, 2013. "Information Security Investment When Hackers Disseminate Knowledge," Decision Analysis, INFORMS, vol. 10(4), pages 352-368, December.
    9. Mazaher Kianpour & Stewart J. Kowalski & Harald Øverby, 2021. "Systematically Understanding Cybersecurity Economics: A Survey," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    10. Yong Wu & Mengyao Xu & Dong Cheng & Tao Dai, 2022. "Information Security Strategies for Information-Sharing Firms Considering a Strategic Hacker," Decision Analysis, INFORMS, vol. 19(2), pages 99-122, June.
    11. Daniel Schatz & Rabih Bashroush, 0. "Economic valuation for information security investment: a systematic literature review," Information Systems Frontiers, Springer, vol. 0, pages 1-24.
    12. Kjell Hausken, 2017. "Security Investment, Hacking, and Information Sharing between Firms and between Hackers," Games, MDPI, vol. 8(2), pages 1-23, May.
    13. Xiaotong Li, 2022. "An evolutionary game‐theoretic analysis of enterprise information security investment based on information sharing platform," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(3), pages 595-606, April.
    14. Xing Gao & Weijun Zhong & Shue Mei, 2014. "A game-theoretic analysis of information sharing and security investment for complementary firms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(11), pages 1682-1691, November.
    15. Daniel Schatz & Rabih Bashroush, 2017. "Economic valuation for information security investment: a systematic literature review," Information Systems Frontiers, Springer, vol. 19(5), pages 1205-1228, October.
    16. Xing Gao & Siyu Gong, 2022. "An economic analysis of information security outsourcing with competitive firms," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(7), pages 2748-2758, October.
    17. Meilin He & Laura Devine & Jun Zhuang, 2018. "Perspectives on Cybersecurity Information Sharing among Multiple Stakeholders Using a Decision‐Theoretic Approach," Risk Analysis, John Wiley & Sons, vol. 38(2), pages 215-225, February.
    18. Xing Gao & Weijun Zhong & Shue Mei, 2015. "Security investment and information sharing under an alternative security breach probability function," Information Systems Frontiers, Springer, vol. 17(2), pages 423-438, April.
    19. Xiaotong Li & Qianyao Xue, 2021. "An economic analysis of information security investment decision making for substitutable enterprises," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(5), pages 1306-1316, July.
    20. Alessandro Fedele & Cristian Roner, 2022. "Dangerous games: A literature review on cybersecurity investments," Journal of Economic Surveys, Wiley Blackwell, vol. 36(1), pages 157-187, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:70:y:2018:i:2:d:10.1007_s10898-017-0585-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.