IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v654y2024ics0378437124006472.html
   My bibliography  Save this article

Study on pedestrian evacuation simulation model considering group behavior

Author

Listed:
  • Qin, Sheng-Hui
  • Li, Na

Abstract

As a crowded place on the university campus, the cafeteria inevitably has many safety hazards, such as fire accidents caused by open flames and large appliances, stampede accidents caused by overcrowding during peak dining hours, etc. Therefore, studying pedestrian evacuation in university campus cafeterias is particularly necessary. Pedestrians on campus mostly travel in groups. Previous studies mainly used continuous models to discuss pedestrian group evacuation behavior. In this study, based on the cellular automaton pedestrian evacuation simulation model, the floor field calculation method was improved. A cellular automaton pedestrian evacuation simulation model considering group behavior was established and applied to the evacuation scenario of students in a university campus cafeteria. The study found that under the different group configurations, the pedestrian ratios, and the pedestrian densities, the pedestrian evacuation efficiency had significant differences. The results showed that when the different group configurations existed in the scenario, the higher the proportion of the pedestrians with three-person front-to-back group configurations, the higher the evacuation efficiency. When only one type of the group configuration existed in the scenario, at low pedestrian density, the evacuation efficiency of the individual pedestrian groups was higher compared to the other six group configurations. While at high pedestrian density, the evacuation efficiency of the three-person front-to-back group configurations was higher. These findings provided important references for pedestrian evacuation in university campus cafeterias and provided insights for the simulation research of group pedestrian evacuation models, contributing to enhancing campus safety management and ensuring the safety of teachers, students, and staff.

Suggested Citation

  • Qin, Sheng-Hui & Li, Na, 2024. "Study on pedestrian evacuation simulation model considering group behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 654(C).
  • Handle: RePEc:eee:phsmap:v:654:y:2024:i:c:s0378437124006472
    DOI: 10.1016/j.physa.2024.130138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124006472
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:654:y:2024:i:c:s0378437124006472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.