IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v432y2015icp87-101.html
   My bibliography  Save this article

Lane formation in pedestrian counterflows driven by a potential field considering following and avoidance behaviours

Author

Listed:
  • Guo, Wei
  • Wang, Xiaolu
  • Zheng, Xiaoping

Abstract

Lane formation in pedestrian counterflows is an interesting self-organization phenomenon. It is believed to be caused by the following or avoidance behaviours of pedestrians. In this paper, a potential field CA model that considers the velocity and density distributions of a crowd and their subjective consciousness is proposed to study the effects of the two behaviours on lane formation in the case of a pedestrian counterflow in a corridor with a periodic boundary. An indexing system is introduced to distinguish the three different patterns observed in the counterflow, and a smoothness index is introduced to measure the smoothness of the counterflow. It is found that avoidance behaviour is more relevant to lane formation than following behaviour. Some differences between the two behaviours are also presented.

Suggested Citation

  • Guo, Wei & Wang, Xiaolu & Zheng, Xiaoping, 2015. "Lane formation in pedestrian counterflows driven by a potential field considering following and avoidance behaviours," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 87-101.
  • Handle: RePEc:eee:phsmap:v:432:y:2015:i:c:p:87-101
    DOI: 10.1016/j.physa.2015.03.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115002666
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.03.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lam, William H. K. & Lee, Jodie Y. S. & Chan, K. S. & Goh, P. K., 2003. "A generalised function for modeling bi-directional flow effects on indoor walkways in Hong Kong," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(9), pages 789-810, November.
    2. Hughes, Roger L., 2002. "A continuum theory for the flow of pedestrians," Transportation Research Part B: Methodological, Elsevier, vol. 36(6), pages 507-535, July.
    3. Mehdi Moussaïd & Elsa G Guillot & Mathieu Moreau & Jérôme Fehrenbach & Olivier Chabiron & Samuel Lemercier & Julien Pettré & Cécile Appert-Rolland & Pierre Degond & Guy Theraulaz, 2012. "Traffic Instabilities in Self-Organized Pedestrian Crowds," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-10, March.
    4. Tajima, Yusuke & Takimoto, Kouhei & Nagatani, Takashi, 2002. "Pattern formation and jamming transition in pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(3), pages 709-723.
    5. Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
    6. Isobe, Motoshige & Adachi, Taku & Nagatani, Takashi, 2004. "Experiment and simulation of pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 638-650.
    7. Nagatani, Takashi, 2009. "Freezing transition in the mean-field approximation model of pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(24), pages 4973-4978.
    8. Kirchner, Ansgar & Schadschneider, Andreas, 2002. "Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 260-276.
    9. Suma, Yushi & Yanagisawa, Daichi & Nishinari, Katsuhiro, 2012. "Anticipation effect in pedestrian dynamics: Modeling and experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 248-263.
    10. Takimoto, Kouhei & Tajima, Yusuke & Nagatani, Takashi, 2002. "Effect of partition line on jamming transition in pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 308(1), pages 460-470.
    11. Weng, W.G. & Shen, S.F. & Yuan, H.Y. & Fan, W.C., 2007. "A behavior-based model for pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 668-678.
    12. William Lam & Jodie Lee & C. Cheung, 2002. "A study of the bi-directional pedestrian flow characteristics at Hong Kong signalized crosswalk facilities," Transportation, Springer, vol. 29(2), pages 169-192, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Pei-Yang & Guo, Ren-Yong, 2021. "Simulation of pedestrian flows through queues: Effect of interaction and intersecting angle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    2. Li, Na & Guo, Ren-Yong, 2020. "Simulation of bi-directional pedestrian flow through a bottleneck: Cell transmission model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    3. Cui, Geng & Yanagisawa, Daichi & Nishinari, Katsuhiro, 2021. "Incorporating genetic algorithm to optimise initial condition of pedestrian evacuation based on agent aggressiveness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    4. Tan, Bangkun & Xuan, Chenrui & Xie, Wei & Shi, Meng & Ma, Yi, 2024. "Dynamic characteristics of the sideways movement of pedestrians: An experimental study based on single-file experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    5. Li, Xingli & Guo, Fang & Kuang, Hua & Zhou, Huaguo, 2017. "Effect of psychological tension on pedestrian counter flow via an extended cost potential field cellular automaton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 47-57.
    6. Li, Xiao-Yang & Lin, Zhi-Yang & Zhang, Peng & Zhang, Xiao-Ning, 2023. "Reconstruction of density and cost potential field of Eikonal equation: Applications to discrete pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    7. Tao, Y.Z. & Dong, L.Y., 2017. "A Cellular Automaton model for pedestrian counterflow with swapping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 155-168.
    8. Luo, Lin & Liu, Xiaobo & Fu, Zhijian & Ma, Jian & Liu, Fanxiao, 2020. "Modeling following behavior and right-side-preference in multidirectional pedestrian flows by modified FFCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    9. Zhou, Xuemei & Hu, Jingjie & Ji, Xiangfeng & Xiao, Xiongziyan, 2019. "Cellular automaton simulation of pedestrian flow considering vision and multi-velocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 982-992.
    10. Subramanian, Gayathri Harihara & Choubey, Nipun & Verma, Ashish, 2022. "Modelling and simulating serpentine group behaviour in crowds using modified social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    11. Zeng, Yiping & Ye, Rui & Song, Weiguo & Luo, Shengfeng & Meng, Fanyu & Vizzari, Giuseppe, 2021. "Entropy analysis of the laminar movement in bidirectional pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
    2. Luo, Lin & Liu, Xiaobo & Fu, Zhijian & Ma, Jian & Liu, Fanxiao, 2020. "Modeling following behavior and right-side-preference in multidirectional pedestrian flows by modified FFCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    3. Wu, Pei-Yang & Guo, Ren-Yong, 2021. "Simulation of pedestrian flows through queues: Effect of interaction and intersecting angle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    4. Tao, Y.Z. & Dong, L.Y., 2017. "A Cellular Automaton model for pedestrian counterflow with swapping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 155-168.
    5. Zhang, Qi, 2015. "Simulation model of bi-directional pedestrian considering potential effect ahead and behind," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 335-348.
    6. Lili Lu, A. & Gang Ren, B. & Wei Wang, C. & Ching-Yao Chan, D., 2015. "Application of SFCA pedestrian simulation model to the signalized crosswalk width design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 76-89.
    7. Feliciani, Claudio & Nishinari, Katsuhiro, 2016. "An improved Cellular Automata model to simulate the behavior of high density crowd and validation by experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 135-148.
    8. Lei, Wenjun & Li, Angui & Gao, Ran & Zhou, Ning & Mei, Sen & Tian, Zhenguo, 2012. "Experimental study and numerical simulation of evacuation from a dormitory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5189-5196.
    9. Jin, Cheng-Jie & Jiang, Rui & Wei, Wei & Li, Dawei & Guo, Ning, 2018. "Microscopic events under high-density condition in uni-directional pedestrian flow experiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 237-247.
    10. Flötteröd, Gunnar & Lämmel, Gregor, 2015. "Bidirectional pedestrian fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 194-212.
    11. Li, Xingli & Guo, Fang & Kuang, Hua & Zhou, Huaguo, 2017. "Effect of psychological tension on pedestrian counter flow via an extended cost potential field cellular automaton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 47-57.
    12. Guo, Ning & Jiang, Rui & Wong, S.C. & Hao, Qing-Yi & Xue, Shu-Qi & Xiao, Yao & Wu, Chao-Yun, 2020. "Modeling the interactions of pedestrians and cyclists in mixed flow conditions in uni- and bidirectional flows on a shared pedestrian-cycle road," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 259-284.
    13. Liu, Shaobo & Yang, Lizhong & Fang, Tingyong & Li, Jian, 2009. "Evacuation from a classroom considering the occupant density around exits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(9), pages 1921-1928.
    14. Zhang, Jun & Song, Weiguo & Xu, Xuan, 2008. "Experiment and multi-grid modeling of evacuation from a classroom," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5901-5909.
    15. Fu, Zhijian & Luo, Lin & Yang, Yue & Zhuang, Yifan & Zhang, Peitong & Yang, Lizhong & Yang, Hongtai & Ma, Jian & Zhu, Kongjin & Li, Yanlai, 2016. "Effect of speed matching on fundamental diagram of pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 31-42.
    16. Miyagawa, Daiki & Ichinose, Genki, 2020. "Cellular automaton model with turning behavior in crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    17. Liu, Yulu & Ma, Xuechen & Tao, Yizhou & Dong, Liyun & Ding, Xu & Qiu, Xiang, 2024. "Numerical investigation on the impact of obstacles on phase transition in pedestrian counter-flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    18. Yang, Junheng & Zang, Xiaodong & Chen, Weiying & Luo, Qiang & Wang, Rui & Liu, Yuanqian, 2024. "Improved social force model based on pedestrian collision avoidance behavior in counterflow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    19. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    20. Tanimoto, Jun & Hagishima, Aya & Tanaka, Yasukaka, 2010. "Study of bottleneck effect at an emergency evacuation exit using cellular automata model, mean field approximation analysis, and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5611-5618.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:432:y:2015:i:c:p:87-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.