IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v654y2024ics0378437124006186.html
   My bibliography  Save this article

Synchronization on complex dynamical networks via intermittently sampled-data pinning control

Author

Listed:
  • Zhang, Yinxing
  • Sun, Mengmeng
  • Li, Kezan

Abstract

Each specific control strategy has a unique advantage, and combining multiple control strategies can harness the advantages of these strategies. Designing new control strategies by integrating different control strategies is an interesting and challenging topic. This paper introduces an intermittently sampled-data pinning (ISP) control strategy, which merges intermittent control, sampled-data control and pinning control, to study synchronization on complex dynamical networks. The ISP control strategy is proposed to solve three difficulties: first, the controllers transmitting feedback signals may be discontinuous; second, the controllers often cannot operate continuously in practical applications; third, it is usually hard to control all nodes in a dynamical network as the network size is huge. Sufficient conditions are obtained for realizing synchronization on dynamical networks. Furthermore, time delays are incorporated into the proposed control strategy to address the untimely reception of feedback signals and achieve the synchronization conditions on dynamical networks. Finally, two numerical examples demonstrate the effectiveness of the proposed control method.

Suggested Citation

  • Zhang, Yinxing & Sun, Mengmeng & Li, Kezan, 2024. "Synchronization on complex dynamical networks via intermittently sampled-data pinning control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 654(C).
  • Handle: RePEc:eee:phsmap:v:654:y:2024:i:c:s0378437124006186
    DOI: 10.1016/j.physa.2024.130109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124006186
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:654:y:2024:i:c:s0378437124006186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.