IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v177y2023ics0960077923011773.html
   My bibliography  Save this article

Synchronization for stochastic large-scale systems via intermittent delay discrete observation control

Author

Listed:
  • Xu, Dongsheng
  • Xu, Jianju
  • He, Xiaojing
  • Su, Huan

Abstract

This paper proposes a novel intermittent delay discrete observation control for synchronization of stochastic large-scale systems (LSs) with semi-Markov jump. Different from the existing intermittent delay control, our proposed control strategy is based on discrete-time state observations rather than continuous-time state observations during the work time. And by applying the method of average control rate, the control strategy becomes more practical. Then we establish a lower conservative differential inequality, which is significantly conducive to analyze the synchronization of LSs with multiple delays. Based on the generalized Halanay-type inequality, Lyapunov method and stochastic analysis techniques, several sufficient conditions are derived. Finally, we apply the theoretical results to Chua’s circuit with numerical examples being given.

Suggested Citation

  • Xu, Dongsheng & Xu, Jianju & He, Xiaojing & Su, Huan, 2023. "Synchronization for stochastic large-scale systems via intermittent delay discrete observation control," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011773
    DOI: 10.1016/j.chaos.2023.114275
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923011773
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114275?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Shuiming & Hou, Meiyuan, 2021. "Quasi-synchronization of fractional-order heterogeneous dynamical networks via aperiodic intermittent pinning control," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Jinyao & Zhou, Peipei & Cai, Shuiming & Jia, Qiang, 2023. "Exponential synchronization for multi-weighted dynamic networks via finite-level quantized control with adaptive scaling gain," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Guo, Beibei & Xiao, Yu, 2023. "Intermittent synchronization for multi-link and multi-delayed large-scale systems with semi-Markov jump and its application of Chua’s circuits," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Sun, Wenjing & Tang, Ze & Feng, Jianwen & Park, Ju H., 2024. "Quasi-synchronization of heterogeneous neural networks with hybrid time delays via sampled-data saturating impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    4. Jia, Wenwen & Xie, Jingu & Guo, Haihua & Wu, Yongbao, 2024. "Intermittent boundary control for fixed-time stability of reaction–diffusion systems," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Zhang, Lingzhong & Zhong, Jie & Lou, Jungang & Liu, Yang & Lu, Jianquan, 2023. "Bipartite secure synchronization for dynamic networks under deception attacks via delay-dependent impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    6. Shi, Lingna & Li, Jiarong & Jiang, Haijun & Wang, Jinling, 2023. "Quasi-synchronization of multi-layer delayed neural networks with parameter mismatches via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    7. Liang, Jianchao & Liu, Jian & Tse, Chi K. & Liu, Mengxuan, 2024. "Observer-based aperiodically intermittent pinning synchronization of complex-valued dynamical networks with time-varying delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    8. Wu, Kai & Tang, Ming & Ren, Han & Zhao, Liang, 2023. "Quantized pinning bipartite synchronization of fractional-order coupled reaction–diffusion neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.