IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v181y2024ics0960077924001760.html
   My bibliography  Save this article

Output feedback pinning control for complex dynamical networks subjected to multiple attacks

Author

Listed:
  • Zhang, Jinyuan
  • Ma, Yuechao

Abstract

This paper is concentrated on the secure synchronization control issue for complex dynamical networks (CDNs) subjected to multiple attacks. For the sake of conserving resources and being closer to reality, a new output feedback controller based on pinning nodes is firstly designed. Secondly, in contrast with the existent researches on secure network circumstances, we establish a novel multiple attacks model considering the influence of random deception attacks and aperiodic Denial-of-Service (DoS) attacks. Based on the piecewise Lyapunov-Krasovskii function and decoupling method, a new secure synchronization criterion is proposed to realize the mixed H∞ and passive performance of CDNs against multiple attacks, and the control gain is gained. Lastly, the availability of the raised consequence is testified by two concrete examples.

Suggested Citation

  • Zhang, Jinyuan & Ma, Yuechao, 2024. "Output feedback pinning control for complex dynamical networks subjected to multiple attacks," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924001760
    DOI: 10.1016/j.chaos.2024.114625
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924001760
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114625?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ren, Yue & Jiang, Haijun & Hu, Cheng & Li, Xinman & Qin, Xuejiao, 2023. "Discontinuous control for exponential synchronization of complex-valued stochastic multi-layer networks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Sakthivel, N., 2023. "Synchronization of complex dynamical networks subjected to actuator faults and periodic scaling attacks using probabilistic time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    3. Weng, Tongfeng & Chen, Xiaolu & Ren, Zhuoming & Xu, Jin & Yang, Huijie, 2023. "Multiple moving agents on complex networks: From intermittent synchronization to complete synchronization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    4. Liang, Jianchao & Liu, Jian & Tse, Chi K. & Liu, Mengxuan, 2024. "Observer-based aperiodically intermittent pinning synchronization of complex-valued dynamical networks with time-varying delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    5. Long, Changqing & Zhang, Guodong & Hu, Junhao, 2021. "Fixed-time synchronization for delayed inertial complex-valued neural networks," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yi & Zhao, Yi, 2024. "Synchronization of directed higher-order networks via pinning control," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Yue & Jiang, Haijun & Hu, Cheng & Chen, Shanshan, 2024. "Synchronization of complex-valued multi-layer coupled systems by asynchronous intermittent event-triggered mechanisms," Applied Mathematics and Computation, Elsevier, vol. 477(C).
    2. Hou, Meng & He, Qiushi & Ma, Yuechao, 2024. "Quantized adaptive practical fixed-time synchronization of stochastic complex networks with actuator faults," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Parastesh, Fatemeh & Dayani, Zahra & Bahramian, Alireza & Jafari, Sajad & Chen, Guanrong, 2023. "Performance of synchronization in networks of chaotic systems under different PID coupling schemes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    4. Kowsalya, P. & Mohanrasu, S.S. & Kashkynbayev, Ardak & Gokul, P. & Rakkiyappan, R., 2024. "Fixed-time synchronization of Inertial Cohen-Grossberg Neural Networks with state dependent delayed impulse control and its application to multi-image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Abdurahman, Abdujelil & Abudusaimaiti, Mairemunisa & Jiang, Haijun, 2023. "Fixed/predefined-time lag synchronization of complex-valued BAM neural networks with stochastic perturbations," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    6. Kumar, Ankit & Das, Subir & Singh, Sunny & Rajeev,, 2023. "Quasi-projective synchronization of inertial complex-valued recurrent neural networks with mixed time-varying delay and mismatched parameters," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    7. Pu, Hao & Li, Fengjun, 2023. "Fixed/predefined-time synchronization of complex-valued discontinuous delayed neural networks via non-chattering and saturation control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    8. Sri Raja Priyanka, K. & Nagamani, G., 2024. "Non-fragile projective synchronization of delayed discrete-time neural networks via generalized weighted summation inequality," Applied Mathematics and Computation, Elsevier, vol. 479(C).
    9. Zheng, Yi & Wu, Xiaoqun & Fan, Ziye & Wang, Wei, 2022. "Identifying topology and system parameters of fractional-order complex dynamical networks," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    10. Guo, Runan & Xu, Shengyuan, 2023. "Observer-based sliding mode synchronization control of complex-valued neural networks with inertial term and mixed time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    11. Yang, Xuetao & Zhu, Quanxin, 2024. "Stabilization of stochastic nonlinear systems via double-event-triggering mechanisms and switching controls," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    12. Liang, Jianchao & Liu, Jian & Tse, Chi K. & Liu, Mengxuan, 2024. "Observer-based aperiodically intermittent pinning synchronization of complex-valued dynamical networks with time-varying delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924001760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.