IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v652y2024ics0378437124005259.html
   My bibliography  Save this article

Developing deep learning models for predicting urban bike-sharing usage patterns

Author

Listed:
  • Zhao, Xumin
  • Jin, HongWei
  • Luo, Yi
  • Zhang, Zhiqiang
  • Xie, Guojie
  • Yang, Chengji
  • Zheng, Meilian

Abstract

Urban traffic systems are facing significant challenges due to the ever-growing number of vehicles on the road, leading to increased congestion and suboptimal traffic flow. Traditional research focusing on individual traffic flows is often insufficient to meet the complex demands of modern urban transportation. While studying integrated shared single-vehicle flows offers a potential solution to mitigate these issues, the unique characteristics of shared bikes present substantial obstacles to accurate traffic flow research. These obstacles include the high liquidity, sparsity, and variability of shared bikes, the vagueness of travel characteristics, the lack of correlation between travel groups, and the unpredictability of travel patterns. The study endeavors to confront the challenges above by proposing an innovative model that correlates multiuser interactions and elucidates behavioral dynamics. This model utilizes a deep clustering method to analyze the evolution of superlarge-scale shared bike systems in Beijing. It uncovers the complex mechanisms governing user behavior and employs a neural network algorithm to predict shared bike users’ travel patterns effectively. By focusing on the theoretical and algorithmic aspects of behavioral dynamics for large-scale shared single-vehicle flows, this study offers a unique contribution to the field, with significant implications for multi-traffic flow management and urban planning in scenarios with extensive multi-traffic flows.

Suggested Citation

  • Zhao, Xumin & Jin, HongWei & Luo, Yi & Zhang, Zhiqiang & Xie, Guojie & Yang, Chengji & Zheng, Meilian, 2024. "Developing deep learning models for predicting urban bike-sharing usage patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 652(C).
  • Handle: RePEc:eee:phsmap:v:652:y:2024:i:c:s0378437124005259
    DOI: 10.1016/j.physa.2024.130016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124005259
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:652:y:2024:i:c:s0378437124005259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.