IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v482y2017icp228-242.html
   My bibliography  Save this article

An experimental study of the impact of an obstacle on the escape efficiency by using mice under high competition

Author

Listed:
  • Lin, Peng
  • Ma, Jian
  • Liu, Tian Yang
  • Ran, Tong
  • Si, You Liang
  • Wu, Fan Yu
  • Wang, Guo Yuan

Abstract

Crowd dynamics is an area of interest for scientists as a series of accidents caused by crowd within the last decades. Interestingly, some previous experiments and simulations have suggested that the presence of an obstacle in front of an outlet may improve the flow rate. A number of experiments were conducted to drive the mice to pass through an exit, with or without an obstacle before it. The impact of the obstacle on the efficiency of evacuation was studied under two typical geometry conditions, i.e., The setting I and the setting II. The setting I is an area of 1.5 m wide and 80 cm long and the setting II is a laterally confined space compared with Setting I. For evacuation at Setting I, a benchmarking study without the obstacle was conducted and the average evacuation time per mouse is 4.7s±0.44s. Further study was conducted by placing a 3.2 cm-obstacle at varying distances of 3 cm–6 cm and the quickest evacuation time per mouse is reduced to 3s±0.09s, around reduce by 36% compared with no obstacle condition. The presence of an obstacle before an exit improves the flow rate, which is consistent with the previous finding in silo flow and crowd flow. For evacuation at Setting II, similarly, a benchmarking study without obstacle was conducted and the average evacuation time per mouse is 3.9s±0.36s. When the 3.2 cm-obstacle was placed at varying distances from 4 cm to 10 cm, the average evacuation time per mouse increases to 4.9s±0.28s, around 26% higher than no obstacle condition. Further experiments were conducted at Setting II by using a 2 cm-diameter at varying distances from 4 cm to 8 cm and the presence of 2-cm obstacle still increases the evacuation time. The study reveals that the presence of an obstacle in front of an exit can improve or deteriorate the evacuation efficiency depending on the surrounded geometry. The time intervals of two consecutive mice and the burst sizes are also studied.

Suggested Citation

  • Lin, Peng & Ma, Jian & Liu, Tian Yang & Ran, Tong & Si, You Liang & Wu, Fan Yu & Wang, Guo Yuan, 2017. "An experimental study of the impact of an obstacle on the escape efficiency by using mice under high competition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 228-242.
  • Handle: RePEc:eee:phsmap:v:482:y:2017:i:c:p:228-242
    DOI: 10.1016/j.physa.2017.04.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117303217
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.04.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hughes, Roger L., 2002. "A continuum theory for the flow of pedestrians," Transportation Research Part B: Methodological, Elsevier, vol. 36(6), pages 507-535, July.
    2. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    3. Nagai, Ryoichi & Fukamachi, Masahiro & Nagatani, Takashi, 2006. "Evacuation of crawlers and walkers from corridor through an exit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 449-460.
    4. Frank, G.A. & Dorso, C.O., 2011. "Room evacuation in the presence of an obstacle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2135-2145.
    5. Shiwakoti, Nirajan & Sarvi, Majid & Rose, Geoff & Burd, Martin, 2011. "Animal dynamics based approach for modeling pedestrian crowd egress under panic conditions," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1433-1449.
    6. Lin, Peng & Ma, Jian & Liu, Tianyang & Ran, Tong & Si, Youliang & Li, Tao, 2016. "An experimental study of the “faster-is-slower” effect using mice under panic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 157-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Zhiyang & Yue, Hao & Zhang, Ning & Zhang, Xu, 2024. "Research on mechanism and simulation for avoiding behavior of individual pedestrian," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    2. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    3. Zhang, Teng & Zhang, Xuelin & Huang, Shenshi & Li, Changhai & Lu, Shouxiang, 2018. "Collective behavior of mice passing through an exit under panic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 233-242.
    4. Ren, Xiangxia & Hu, Yanghui & Li, Hongliu & Zhang, Jun & Song, Weiguo & Xu, Han, 2022. "Simulation of building evacuation with different ratios of the elderly considering the influence of obstacle position," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    5. Shabna SayedMohammed & Anshi Verma & Charitha Dias & Wael Alhajyaseen & Abdulkarim Almukdad & Kayvan Aghabayk, 2022. "Crowd Evacuation through Crossing Configurations: Effect of Crossing Angles and Walking Speeds on Speed Variation and Evacuation Time," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    6. Shi, Xiaomeng & Ye, Zhirui & Shiwakoti, Nirajan & Tang, Dounan & Lin, Junkai, 2019. "Examining effect of architectural adjustment on pedestrian crowd flow at bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 350-364.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Xiaomeng & Ye, Zhirui & Shiwakoti, Nirajan & Tang, Dounan & Lin, Junkai, 2019. "Examining effect of architectural adjustment on pedestrian crowd flow at bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 350-364.
    2. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2019. "When ‘push’ does not come to ‘shove’: Revisiting ‘faster is slower’ in collective egress of human crowds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 51-69.
    3. Ma, Wanjing & Li, Li & Wang, Yinhai, 2016. "A driving force model for non-strict priority crossing behaviors of right-turn driversAuthor-Name: Lin, Dianchao," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 230-244.
    4. Xiao, Hanyi & Wang, Qiao & Zhang, Jun & Song, Weiguo, 2019. "Experimental study on the single-file movement of mice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 676-686.
    5. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    6. Liu, Yixue & Mao, Zhanli, 2022. "An experimental study on the critical state of herd behavior in decision-making of the crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    7. Haghani, Milad & Sarvi, Majid, 2018. "Crowd behaviour and motion: Empirical methods," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 253-294.
    8. Zhang, Teng & Zhang, Xuelin & Huang, Shenshi & Li, Changhai & Lu, Shouxiang, 2018. "Collective behavior of mice passing through an exit under panic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 233-242.
    9. Guo, Ren-Yong, 2014. "New insights into discretization effects in cellular automata models for pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 1-11.
    10. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    11. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    12. Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
    13. Saberi, Meead & Aghabayk, Kayvan & Sobhani, Amir, 2015. "Spatial fluctuations of pedestrian velocities in bidirectional streams: Exploring the effects of self-organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 120-128.
    14. Hu, Xiangmin & Chen, Tao & Deng, Kaifeng & Wang, Guanning, 2023. "Effects of aggressiveness on pedestrian room evacuation using extended cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    15. Guo, Ren-Yong, 2014. "Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 428-439.
    16. Zheng, Xiaoping & Li, Wei & Guan, Chao, 2010. "Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2177-2188.
    17. Zhu, Yu & Chen, Tao & Ding, Ning & Chraibi, Mohcine & Fan, Wei-Cheng, 2021. "Follow people or signs? A novel way-finding method based on experiments and simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    18. Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
    19. Sticco, I.M. & Frank, G.A. & Cerrotta, S. & Dorso, C.O., 2017. "Room evacuation through two contiguous exits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 172-185.
    20. Mohd Ibrahim, Azhar & Venkat, Ibrahim & Wilde, Philippe De, 2017. "Uncertainty in a spatial evacuation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 485-497.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:482:y:2017:i:c:p:228-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.