IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v643y2024ics0378437124002991.html
   My bibliography  Save this article

Stochastic queue profile estimation using license plate recognition data

Author

Listed:
  • WU, Hao
  • LUO, Lyuzhou
  • OGUCHI, Takashi
  • TANG, Keshuang
  • ZHU, Hong

Abstract

Queue profile has garnered significant attention for its precise description of queue formation and dissipation at signalized intersections. License Plate Recognition (LPR) systems, recording full-sample lane-based departure times of individual vehicles, offer an ideal data source for queue profile estimation. Thus, this paper presents a stochastic queue profile estimation method utilizing LPR data. It adopts the classic Input-Output model as a baseline to reconstruct arrival and departure curves using departure information from LPR detectors at successive intersections. A pseudo departure curve is then derived from the distribution of free-flow travel time. The stochastic queue profile is further reconstructed by analyzing the relationship among these curves, accounting for potential lane changes and overtaking behavior. The proposed method is validated through empirical and simulation cases. The empirical case achieves accurate queue length estimation with a Mean Absolute Error (MAE) of 5.38 m, while the simulation case yields precise stochastic queue profiles with an MAE of 5.95 m and an average deviation of 2.40 m for queue length. Sensitivity analysis demonstrates the method's robustness across parameters like demand-to-capacity ratio, miss detection ratio, and overtaking ratio. This work holds promise for real-time signal control optimization and vehicular trajectory reconstruction.

Suggested Citation

  • WU, Hao & LUO, Lyuzhou & OGUCHI, Takashi & TANG, Keshuang & ZHU, Hong, 2024. "Stochastic queue profile estimation using license plate recognition data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
  • Handle: RePEc:eee:phsmap:v:643:y:2024:i:c:s0378437124002991
    DOI: 10.1016/j.physa.2024.129790
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124002991
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129790?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Comert, Gurcan & Cetin, Mecit, 2009. "Queue length estimation from probe vehicle location and the impacts of sample size," European Journal of Operational Research, Elsevier, vol. 197(1), pages 196-202, August.
    2. Wu, Xinkai & Liu, Henry X., 2011. "A shockwave profile model for traffic flow on congested urban arterials," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1768-1786.
    3. Wang, Zhengli & Zhu, Liyun & Ran, Bin & Jiang, Hai, 2020. "Queue profile estimation at a signalized intersection by exploiting the spatiotemporal propagation of shockwaves," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 59-71.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Varga, Balázs & Tettamanti, Tamás & Kulcsár, Balázs & Qu, Xiaobo, 2020. "Public transport trajectory planning with probabilistic guarantees," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 81-101.
    2. Wang, Zhengli & Zhu, Liyun & Ran, Bin & Jiang, Hai, 2020. "Queue profile estimation at a signalized intersection by exploiting the spatiotemporal propagation of shockwaves," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 59-71.
    3. Xingliang Liu & Jian Wang & Tangzhi Liu & Jin Xu, 2021. "Forecasting Spatiotemporal Boundary of Emergency-Event-Based Traffic Congestion in Expressway Network Considering Highway Node Acceptance Capacity," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
    4. Florin, Ryan & Olariu, Stephan, 2020. "Towards real-time density estimation using vehicle-to-vehicle communications," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 435-456.
    5. Yang, Qiaoli & Shi, Zhongke & Yu, Shaowei & Zhou, Jie, 2018. "Analytical evaluation of the use of left-turn phasing for single left-turn lane only," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 266-303.
    6. Xingmin Wang & Zachary Jerome & Zihao Wang & Chenhao Zhang & Shengyin Shen & Vivek Vijaya Kumar & Fan Bai & Paul Krajewski & Danielle Deneau & Ahmad Jawad & Rachel Jones & Gary Piotrowicz & Henry X. L, 2024. "Traffic light optimization with low penetration rate vehicle trajectory data," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Cho, Hsun-Jung & Tseng, Ming-Te & Hwang, Ming-Chorng, 2014. "Using detection of vehicular presence to estimate shockwave speed and upstream traffics for a signalized intersection," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 1151-1165.
    8. Hao, Peng & Ban, Xuegang, 2015. "Long queue estimation for signalized intersections using mobile data," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 54-73.
    9. Wong, Wai & Shen, Shengyin & Zhao, Yan & Liu, Henry X., 2019. "On the estimation of connected vehicle penetration rate based on single-source connected vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 169-191.
    10. Bae, Bumjoon & Liu, Yuandong & Han, Lee D. & Bozdogan, Hamparsum, 2019. "Spatio-temporal traffic queue detection for uninterrupted flows," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 20-34.
    11. Azam Asanjarani & Yoni Nazarathy & Peter Taylor, 2021. "A survey of parameter and state estimation in queues," Queueing Systems: Theory and Applications, Springer, vol. 97(1), pages 39-80, February.
    12. Wang Yu & Zhang Dongbo & Zhang Yu, 2022. "GPS data Mining at Signalized Intersections for Congestion Charging," Computational Economics, Springer;Society for Computational Economics, vol. 59(4), pages 1713-1734, April.
    13. Sara Sasaninejad & Joris Van Malderen & Joris Walraevens & Sabine Wittevrongel, 2023. "Expected Waiting Times at an Intersection with a Green Extension Strategy for Freight Vehicles: An Analytical Analysis," Mathematics, MDPI, vol. 11(3), pages 1-26, February.
    14. Qu, Xiaobo & Wang, Shuaian & Zhang, Jin, 2015. "On the fundamental diagram for freeway traffic: A novel calibration approach for single-regime models," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 91-102.
    15. Zhou, Xuesong, 2017. "Recasting and optimizing intersection automation as a connected-and-automated-vehicle (CAV) scheduling problem: A sequential branch-and-bound search approach in phase-time-traffic hypernetworkAuthor-N," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 479-506.
    16. Hao, Peng & Ban, Xuegang (Jeff) & Guo, Dong & Ji, Qiang, 2014. "Cycle-by-cycle intersection queue length distribution estimation using sample travel times," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 185-204.
    17. František Kolovský & Ivana Kolingerová, 2022. "The Piecewise Constant/Linear Solution for Dynamic User Equilibrium," Networks and Spatial Economics, Springer, vol. 22(4), pages 737-765, December.
    18. Comert, Gurcan, 2016. "Queue length estimation from probe vehicles at isolated intersections: Estimators for primary parameters," European Journal of Operational Research, Elsevier, vol. 252(2), pages 502-521.
    19. Wang, Peirong (Slade) & Li, Pengfei (Taylor) & Chowdhury, Farzana R. & Zhang, Li & Zhou, Xuesong, 2020. "A mixed integer programming formulation and scalable solution algorithms for traffic control coordination across multiple intersections based on vehicle space-time trajectories," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 266-304.
    20. Hans, Etienne & Chiabaut, Nicolas & Leclercq, Ludovic, 2015. "Applying variational theory to travel time estimation on urban arterials," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 169-181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:643:y:2024:i:c:s0378437124002991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.