IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v641y2024ics0378437124002292.html
   My bibliography  Save this article

Studying the impact of fluctuations, spikes and rare events in time series through a wavelet entropy predictability measure

Author

Listed:
  • Mastroeni, Loretta
  • Mazzoccoli, Alessandro
  • Vellucci, Pierluigi

Abstract

Data has become one of the most crucial sources of human life. In particular, the ability to predict the future through data is a widely studied topic. In finance, as an instance, increased volatility, fluctuations, low-frequency events, and rare events negatively affect the predictability of data, thus increasing the level of risk. As a consequence, the inability to make accurate predictions on future events increases the uncertainty and variability of a given scenario, indicating a consequent increase in risk. In this paper, we analyze data predictability introducing a new measure based on entropy and the wavelet transform. In particular, we show that the data are less predictable than one might expect due to the mentioned fluctuations and low-frequency events. Furthermore, we apply our tool to real data, in particular to time series of commodities. As a result, thanks to this new measure, we can observe that the price time series under analysis exhibit a significant level of unpredictability due to increased volatility, fluctuations, and the influence of low-frequency events.

Suggested Citation

  • Mastroeni, Loretta & Mazzoccoli, Alessandro & Vellucci, Pierluigi, 2024. "Studying the impact of fluctuations, spikes and rare events in time series through a wavelet entropy predictability measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
  • Handle: RePEc:eee:phsmap:v:641:y:2024:i:c:s0378437124002292
    DOI: 10.1016/j.physa.2024.129720
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124002292
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blundell, Richard & Griffith, Rachel & Van Reenen, John, 1995. "Dynamic Count Data Models of Technological Innovation," Economic Journal, Royal Economic Society, vol. 105(429), pages 333-344, March.
    2. Galateia Terti & Isabelle Ruin & Jonathan J. Gourley & Pierre Kirstetter & Zachary Flamig & Juliette Blanchet & Ami Arthur & Sandrine Anquetin, 2019. "Toward Probabilistic Prediction of Flash Flood Human Impacts," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 140-161, January.
    3. Dimpfl, Thomas & Peter, Franziska J., 2018. "Analyzing volatility transmission using group transfer entropy," Energy Economics, Elsevier, vol. 75(C), pages 368-376.
    4. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    5. Pérez, D.G. & Zunino, L. & Garavaglia, M. & Rosso, O.A., 2006. "Wavelet entropy and fractional Brownian motion time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 282-288.
    6. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    7. Zunino, L. & Pérez, D.G. & Garavaglia, M. & Rosso, O.A., 2007. "Wavelet entropy of stochastic processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 503-512.
    8. Robert Carbone & Spyros Makridakis, 1986. "Forecasting When Pattern Changes Occur Beyond the Historical Data," Management Science, INFORMS, vol. 32(3), pages 257-271, March.
    9. Alessandro Mazzoccoli & Maurizio Naldi, 2020. "Robustness of Optimal Investment Decisions in Mixed Insurance/Investment Cyber Risk Management," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 550-564, March.
    10. Mastroeni, Loretta & Mazzoccoli, Alessandro & Quaresima, Greta & Vellucci, Pierluigi, 2022. "Wavelet analysis and energy-based measures for oil-food price relationship as a footprint of financialisation effect," Resources Policy, Elsevier, vol. 77(C).
    11. Loretta Mastroeni & Alessandro Mazzoccoli & Greta Quaresima & Pierluigi Vellucci, 2021. "Wavelet analysis and energy-based measures for oil-food price relationship as a footprint of financialisation effect," Papers 2104.11891, arXiv.org, revised Mar 2022.
    12. Dirk Helbing, 2013. "Globally networked risks and how to respond," Nature, Nature, vol. 497(7447), pages 51-59, May.
    13. Mastroeni, Loretta & Vellucci, Pierluigi & Naldi, Maurizio, 2018. "Co-existence of stochastic and chaotic behaviour in the copper price time series," Resources Policy, Elsevier, vol. 58(C), pages 295-302.
    14. Benedetto, F. & Giunta, G. & Mastroeni, L., 2016. "On the predictability of energy commodity markets by an entropy-based computational method," Energy Economics, Elsevier, vol. 54(C), pages 302-312.
    15. Mastroeni, Loretta & Mazzoccoli, Alessandro & Quaresima, Greta & Vellucci, Pierluigi, 2021. "Decoupling and recoupling in the crude oil price benchmarks: An investigation of similarity patterns," Energy Economics, Elsevier, vol. 94(C).
    16. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loretta Mastroeni & Pierluigi Vellucci, 2022. "Construction of an SDE Model from Intraday Copper Futures Prices," Risks, MDPI, vol. 10(11), pages 1-21, November.
    2. Benedetto, Francesco & Mastroeni, Loretta & Quaresima, Greta & Vellucci, Pierluigi, 2020. "Does OVX affect WTI and Brent oil spot variance? Evidence from an entropy analysis," Energy Economics, Elsevier, vol. 89(C).
    3. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    4. Loretta Mastroeni & Alessandro Mazzoccoli & Greta Quaresima & Pierluigi Vellucci, 2021. "Wavelet analysis and energy-based measures for oil-food price relationship as a footprint of financialisation effect," Papers 2104.11891, arXiv.org, revised Mar 2022.
    5. Aktham Maghyereh & Hussein Abdoh, 2022. "Global financial crisis versus COVID‐19: Evidence from sentiment analysis," International Finance, Wiley Blackwell, vol. 25(2), pages 218-248, August.
    6. Maghyereh, Aktham & Abdoh, Hussein & Awartani, Basel, 2022. "Have returns and volatilities for financial assets responded to implied volatility during the COVID-19 pandemic?," Journal of Commodity Markets, Elsevier, vol. 26(C).
    7. Sprangers, Olivier & Schelter, Sebastian & de Rijke, Maarten, 2023. "Parameter-efficient deep probabilistic forecasting," International Journal of Forecasting, Elsevier, vol. 39(1), pages 332-345.
    8. Mastroeni, Loretta & Mazzoccoli, Alessandro & Quaresima, Greta & Vellucci, Pierluigi, 2022. "Wavelet analysis and energy-based measures for oil-food price relationship as a footprint of financialisation effect," Resources Policy, Elsevier, vol. 77(C).
    9. Naqvi, Asjad & Monasterolo, Irene, 2019. "Natural Disasters, Cascading Losses, and Economic Complexity: A Multi-layer Behavioral Network Approach," Ecological Economic Papers 24, WU Vienna University of Economics and Business.
    10. Symeonidis, George, 2001. "Price Competition, Innovation and Profitability: Theory and UK Evidence," CEPR Discussion Papers 2816, C.E.P.R. Discussion Papers.
    11. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    12. Wei Dai & Yuan An & Wen Long, 2021. "Price change prediction of ultra high frequency financial data based on temporal convolutional network," Papers 2107.00261, arXiv.org.
    13. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    14. Freeman, Mark C. & Wagner, Gernot & Zeckhauser, Richard J., 2015. "Climate Sensitivity Uncertainty: When Is Good News Bad?," Working Paper Series rwp15-002, Harvard University, John F. Kennedy School of Government.
    15. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    16. Matthias Schmidt & Hermann Held & Elmar Kriegler & Alexander Lorenz, 2013. "Climate Policy Under Uncertain and Heterogeneous Climate Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 79-99, January.
    17. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    18. Igor Linkov & Benjamin Trump & Greg Kiker, 2022. "Diversity and inclusiveness are necessary components of resilient international teams," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-5, December.
    19. Seth D. Baum & Timothy M. Maher & Jacob Haqq-Misra, 2013. "Double catastrophe: intermittent stratospheric geoengineering induced by societal collapse," Environment Systems and Decisions, Springer, vol. 33(1), pages 168-180, March.
    20. Pierpaolo Parrotta & Dario Pozzoli & Mariola Pytlikova, 2014. "The nexus between labor diversity and firm’s innovation," Journal of Population Economics, Springer;European Society for Population Economics, vol. 27(2), pages 303-364, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:641:y:2024:i:c:s0378437124002292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.