IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v225y2024icp165-176.html
   My bibliography  Save this article

Refining Heisenberg’s principle: A greedy approximation of step functions with triangular waveform dictionaries

Author

Listed:
  • Mazzoccoli, Alessandro
  • Rivero, Jorge Andres
  • Vellucci, Pierluigi

Abstract

In this paper, we consider a step function characterized by a real-valued sequence and its linear expansion representation constructed via the matching pursuit (MP) algorithm. We utilize a waveform dictionary based on the triangular function as part of this algorithm and representation. The waveform dictionary is comprised of waveforms localized in the time–frequency domain. In view of this, we prove that the triangular waveforms are more efficient than the rectangular waveforms used in a prior study by achieving a product of variances in the time–frequency domain closer to the lower bound of the Heisenberg Uncertainty Principle. We provide a MP algorithm solvable in polynomial time, contrasting the common exponential time when using Gaussian windows. We apply this algorithm on simulated data and real GDP data from 1947–2024 to demonstrate its application and efficiency.

Suggested Citation

  • Mazzoccoli, Alessandro & Rivero, Jorge Andres & Vellucci, Pierluigi, 2024. "Refining Heisenberg’s principle: A greedy approximation of step functions with triangular waveform dictionaries," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 165-176.
  • Handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:165-176
    DOI: 10.1016/j.matcom.2024.05.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847542400185X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.05.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahsan, Muhammad & Lei, Weidong & Bohner, Martin & Khan, Amir Ali, 2024. "A high-order multi-resolution wavelet method for nonlinear systems of differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 543-559.
    2. Ramsey, James B. & Zhang, Zhifeng, 1997. "The analysis of foreign exchange data using waveform dictionaries," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 341-372, December.
    3. Mastroeni, Loretta & Mazzoccoli, Alessandro & Quaresima, Greta & Vellucci, Pierluigi, 2022. "Wavelet analysis and energy-based measures for oil-food price relationship as a footprint of financialisation effect," Resources Policy, Elsevier, vol. 77(C).
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. James H. Stock & Mark W. Watson, 2003. "Has the Business Cycle Changed and Why?," NBER Chapters, in: NBER Macroeconomics Annual 2002, Volume 17, pages 159-230, National Bureau of Economic Research, Inc.
    6. Mastroeni, Loretta & Mazzoccoli, Alessandro & Vellucci, Pierluigi, 2024. "Studying the impact of fluctuations, spikes and rare events in time series through a wavelet entropy predictability measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    7. Manohara, G. & Kumbinarasaiah, S., 2024. "Numerical approximation of fractional SEIR epidemic model of measles and smoking model by using Fibonacci wavelets operational matrix approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 221(C), pages 358-396.
    8. Michelle Alexopoulos, 2011. "Read All about It!! What Happens Following a Technology Shock?," American Economic Review, American Economic Association, vol. 101(4), pages 1144-1179, June.
    9. Ramsey, J.B., 2002. "Wavelets in Economics and Finance: Past and Future," Working Papers 02-02, C.V. Starr Center for Applied Economics, New York University.
    10. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    11. Patrick M. Crowley, 2007. "A Guide To Wavelets For Economists," Journal of Economic Surveys, Wiley Blackwell, vol. 21(2), pages 207-267, April.
    12. Sun, Ligang & Dilz, Roeland J. & van Beurden, Martijn C., 2023. "A rational-expansion-based method to compute Gabor coefficients of 2D indicator functions supported on polygonal domain," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 487-502.
    13. Loretta Mastroeni & Alessandro Mazzoccoli & Greta Quaresima & Pierluigi Vellucci, 2021. "Wavelet analysis and energy-based measures for oil-food price relationship as a footprint of financialisation effect," Papers 2104.11891, arXiv.org, revised Mar 2022.
    14. Ramsey James B., 2002. "Wavelets in Economics and Finance: Past and Future," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(3), pages 1-29, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    2. Soni, Rajat Kumar & Nandan, Tanuj & Sawarn, Ujjawal, 2024. "Investment modeling between energy futures and responsible investment," Research in International Business and Finance, Elsevier, vol. 70(PB).
    3. Corbet, Shaen & Gurdgiev, Constantin & Meegan, Andrew, 2018. "Long-term stock market volatility and the influence of terrorist attacks in Europe," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 118-131.
    4. Stan Plessis & Gideon Rand & Kevin Kotzé, 2015. "Measuring Core Inflation in South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 83(4), pages 527-548, December.
    5. Andersson, Fredrik N. G., 2008. "Long Run Inflation Indicators – Why the ECB got it Right," Working Papers 2008:17, Lund University, Department of Economics.
    6. Chakrabarty, Anindya & De, Anupam & Gunasekaran, Angappa & Dubey, Rameshwar, 2015. "Investment horizon heterogeneity and wavelet: Overview and further research directions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 45-61.
    7. Huang, Yuting & Li, Qiang & Liow, Kim Hiang & Zhou, Xiaoxia, 2020. "Is Housing the Business Cycle? A Multiresolution Analysis for OECD Countries," Journal of Housing Economics, Elsevier, vol. 49(C).
    8. Marco Gallegati & Mauro Gallegati, 2005. "Wavelet variance and correlation analyses of output in G7 countries," Macroeconomics 0512017, University Library of Munich, Germany.
    9. Christian M. Hafner, 2012. "Cross-correlating wavelet coefficients with applications to high-frequency financial time series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(6), pages 1363-1379, December.
    10. Luís Aguiar-Conraria & Maria Joana Soares, 2014. "The Continuous Wavelet Transform: Moving Beyond Uni- And Bivariate Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 28(2), pages 344-375, April.
    11. Hassan Farazmand & Amin Mansouri & Morteza Afghah, 2014. "Choosing the best type of wavelet: Case study-business cycle in Iran," Asian Journal of Empirical Research, Asian Economic and Social Society, vol. 4(5), pages 293-314, May.
    12. Jian Zhou, 2012. "Multiscale Analysis of International Linkages of REIT Returns and Volatilities," The Journal of Real Estate Finance and Economics, Springer, vol. 45(4), pages 1062-1087, November.
    13. Saumya Ranjan Dash & Debasish Maitra & Byomakesh Debata & Jitendra Mahakud, 2021. "Economic policy uncertainty and stock market liquidity: Evidence from G7 countries," International Review of Finance, International Review of Finance Ltd., vol. 21(2), pages 611-626, June.
    14. Gallegati, Marco & Ramsey, James B., 2013. "Structural change and phase variation: A re-examination of the q-model using wavelet exploratory analysis," Structural Change and Economic Dynamics, Elsevier, vol. 25(C), pages 60-73.
    15. Kim, Sangbae & In, Francis, 2005. "The relationship between stock returns and inflation: new evidence from wavelet analysis," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 435-444, June.
    16. Fernandez, Viviana, 2006. "The impact of major global events on volatility shifts: Evidence from the Asian crisis and 9/11," Economic Systems, Elsevier, vol. 30(1), pages 79-97, March.
    17. Baqaee, David, 2010. "Using wavelets to measure core inflation: The case of New Zealand," The North American Journal of Economics and Finance, Elsevier, vol. 21(3), pages 241-255, December.
    18. Habimana, Olivier, 2017. "The multiscale relationship between exchange rates and fundamentals differentials: Empirical evidence from Scandinavia," MPRA Paper 75956, University Library of Munich, Germany.
    19. Andersson, Fredrik N. G., 2008. "Bandspectrum Cointegration," Working Papers 2008:18, Lund University, Department of Economics.
    20. Fernandez Viviana P, 2005. "The International CAPM and a Wavelet-Based Decomposition of Value at Risk," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-37, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:165-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.