IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v640y2024ics0378437124002140.html
   My bibliography  Save this article

Exploration on relation between vehicle oscillation type and platoon oscillation evolution based on multi-scenario field experiment

Author

Listed:
  • Zhao, Jiandong
  • Shen, Jin
  • Yu, Zhixin
  • Gao, Yuhang
  • Jiang, Rui

Abstract

In order to explore the categorization of vehicle oscillation and the relationship between individual vehicle oscillation and platoon oscillation in traffic flow, this paper conducts field experiments with both human driving vehicles(HDVs) and autonomous vehicles(AVs). The objective is to utilize experimental data to categorize and quantify traffic oscillation, delve into the impact of different degrees of vehicle oscillation on platoon oscillation, identify patterns between vehicle oscillation types and platoon oscillation evolution, and study the influence of AVs on platoon oscillation. The paper commences with car-following experiments involving HDVs and AVs, sets the platoon into three scenarios of HDV’s platoon, AV’s platoon, and mixed platoon experimental datasets. Subsequently, nine oscillation features reflecting the oscillation characteristics of vehicle traveling, such as volatility and trend, etc., are extracted from the experimental datasets. Then the CLS deep clustering model is constructed, trained, and outputs high-dimensional features. The model's effectiveness is assessed using both clustering error and deep learning error simultaneously. Finally, the paper analyzes the classification results of the experimental dataset and explores the relationship between vehicle oscillation type and platoon oscillation. The research finding indicates that the oscillation classification effectiveness of the CLS model is significantly superior to other algorithms. Using the CLS model, vehicle oscillations are categorized into four most suitable types: I, II, III, and IV, representing slight oscillation, general oscillation, relatively serious oscillation, and severe oscillation respectively. In HDVs’ platoon, as the vehicle oscillation type increases, the following vehicle does not fully adhere to the front vehicle, the amplitude trend of the vehicle changes, leading to oscillation in the following vehicle platoon. In the AVs’ platoon, AVs suppress the backward propagation of oscillations in the platoon, and the oscillation types are all type I, indicating mild oscillation. In the mixed platoon, it is observed that AVs, through swift perception of the state of preceding vehicle, promptly respond to adjust their own driving condition to alleviate platoon oscillation. The higher the proportion of AVs in the platoon, the stronger the inhibitory effect on platoon oscillation.

Suggested Citation

  • Zhao, Jiandong & Shen, Jin & Yu, Zhixin & Gao, Yuhang & Jiang, Rui, 2024. "Exploration on relation between vehicle oscillation type and platoon oscillation evolution based on multi-scenario field experiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
  • Handle: RePEc:eee:phsmap:v:640:y:2024:i:c:s0378437124002140
    DOI: 10.1016/j.physa.2024.129705
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124002140
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Shi-Teng & Jiang, Rui & Tian, Jun-Fang & Zhang, H.M. & Li, Zhen-Hua & Gao, Lan-Da & Jia, Bin, 2021. "Experimental study on properties of lightly congested flow," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 1-19.
    2. Chen, Danjue & Laval, Jorge A. & Ahn, Soyoung & Zheng, Zuduo, 2012. "Microscopic traffic hysteresis in traffic oscillations: A behavioral perspective," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1440-1453.
    3. Zheng, Zuduo & Ahn, Soyoung & Chen, Danjue & Laval, Jorge, 2011. "Freeway traffic oscillations: Microscopic analysis of formations and propagations using Wavelet Transform," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1378-1388.
    4. Li, Zhen-Hua & Zheng, Shi-Teng & Jiang, Rui & Tian, Jun-Fang & Zhu, Kai-Xuan & Di Pace, Roberta, 2022. "Empirical and simulation study on traffic oscillation characteristic using floating car data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    5. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    6. Jiao, Shuaiyang & Zhang, Shengrui & Zhou, Bei & Zhang, Lei & Xue, Liyuan, 2021. "Dynamic performance and safety analysis of car-following models considering collision sensitivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    7. Bassan, Shy & (Avi) Ceder, Avishai, 2008. "Analysis of maximum traffic flow and its breakdown on congested freeways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4349-4366.
    8. Tian, Junfang & Jiang, Rui & Jia, Bin & Gao, Ziyou & Ma, Shoufeng, 2016. "Empirical analysis and simulation of the concave growth pattern of traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 338-354.
    9. Li, Xiaopeng & Cui, Jianxun & An, Shi & Parsafard, Mohsen, 2014. "Stop-and-go traffic analysis: Theoretical properties, environmental impacts and oscillation mitigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 319-339.
    10. Wang, Jufeng & Sun, Fengxin & Cheng, Rongjun & Ge, Hongxia, 2018. "An extended heterogeneous car-following model with the consideration of the drivers’ different psychological headways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1113-1125.
    11. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2010. "Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 983-1000, September.
    12. Sugiyama, Naoki & Nagatani, Takashi, 2013. "Multiple-vehicle collision in traffic flow by a sudden slowdown," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1848-1857.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhen-Hua & Zheng, Shi-Teng & Jiang, Rui & Tian, Jun-Fang & Zhu, Kai-Xuan & Di Pace, Roberta, 2022. "Empirical and simulation study on traffic oscillation characteristic using floating car data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    2. Yao, Handong & Li, Qianwen & Li, Xiaopeng, 2020. "A study of relationships in traffic oscillation features based on field experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 339-355.
    3. Tian, Junfang & Zhu, Chenqiang & Chen, Danjue & Jiang, Rui & Wang, Guanying & Gao, Ziyou, 2021. "Car following behavioral stochasticity analysis and modeling: Perspective from wave travel time," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 160-176.
    4. Zheng, Shi-Teng & Jiang, Rui & Tian, Jun-Fang & Zhang, H.M. & Li, Zhen-Hua & Gao, Lan-Da & Jia, Bin, 2021. "Experimental study on properties of lightly congested flow," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 1-19.
    5. Yuan, Zijian & Wang, Tao & Zhang, Jing & Li, Shubin, 2022. "Influences of dynamic safe headway on car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    6. He, Zhengbing & Zheng, Liang & Guan, Wei, 2015. "A simple nonparametric car-following model driven by field data," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 185-201.
    7. Wang, Tao & Li, Guangyao & Zhang, Jing & Li, Shubin & Sun, Tao, 2019. "The effect of Headway Variation Tendency on traffic flow: Modeling and stabilization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 566-575.
    8. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    9. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stochastic factors and string stability of traffic flow: Analytical investigation and numerical study based on car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 96-122.
    10. Hosen, Md. Zakir & Hossain, Md. Anowar & Tanimoto, Jun, 2024. "Traffic model for the dynamical behavioral study of a traffic system imposing push and pull effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
    11. Zhang, Jing & Xu, Keyu & Li, Shubin & Wang, Tao, 2020. "A new two-lane lattice hydrodynamic model with the introduction of driver’s predictive effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    12. Tian, Junfang & Zhang, H.M. & Treiber, Martin & Jiang, Rui & Gao, Zi-You & Jia, Bin, 2019. "On the role of speed adaptation and spacing indifference in traffic instability: Evidence from car-following experiments and its stochastic model," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 334-350.
    13. Wen, Jianghui & Hong, Lijiang & Dai, Min & Xiao, Xinping & Wu, Chaozhong, 2023. "A stochastic model for stop-and-go phenomenon in traffic oscillation: On the prospective of macro and micro traffic flow," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    14. Mohammadian, Saeed & Zheng, Zuduo & Haque, Md. Mazharul & Bhaskar, Ashish, 2021. "Performance of continuum models for realworld traffic flows: Comprehensive benchmarking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 132-167.
    15. Zhang, Jing & Wang, Bo & Li, Shubin & Sun, Tao & Wang, Tao, 2020. "Modeling and application analysis of car-following model with predictive headway variation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    16. Tian, Junfang & Jiang, Rui & Jia, Bin & Gao, Ziyou & Ma, Shoufeng, 2016. "Empirical analysis and simulation of the concave growth pattern of traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 338-354.
    17. Li, Xiaopeng & Ghiasi, Amir & Xu, Zhigang & Qu, Xiaobo, 2018. "A piecewise trajectory optimization model for connected automated vehicles: Exact optimization algorithm and queue propagation analysis," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 429-456.
    18. Treiber, Martin & Kesting, Arne, 2018. "The Intelligent Driver Model with stochasticity – New insights into traffic flow oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 613-623.
    19. Chen, Danjue & Ahn, Soyoung & Laval, Jorge & Zheng, Zuduo, 2014. "On the periodicity of traffic oscillations and capacity drop: The role of driver characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 117-136.
    20. Sun, Jie & Zheng, Zuduo & Sun, Jian, 2020. "The relationship between car following string instability and traffic oscillations in finite-sized platoons and its use in easing congestion via connected and automated vehicles with IDM based control," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 58-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:640:y:2024:i:c:s0378437124002140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.