IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v640y2024ics0378437124002048.html
   My bibliography  Save this article

Segmental estimation and testing method for power-law distributions and some extensions

Author

Listed:
  • Luo, Xinyi

Abstract

For discrete segmental power-law distributions, the probability ratio ft/ft+1 is a linear function of the exponent parameter. Based on this property, the estimation of the exponent parameter and a goodness-of-fit testing method are provided. The proposed testing method is parameter-independent and the testing statistic is proved to asymptotically follow a chi-square distribution. In the region where power-law properties exist, the testing method and the estimation method can be applied by segments, so they can also be used to determine interval endpoints. These methods can also be extended to other discrete distributions such as Yule distribution, Poisson distribution, Geometry distribution and so on. Some simulation results of synthetic truncated power-law distributions provide support for the effectiveness of the proposed methods. To demonstrate the applicability of the method, two empirical examples, word frequencies of the novel Moby Dick and US casuality numbers in the American Indian War, are analyzed.

Suggested Citation

  • Luo, Xinyi, 2024. "Segmental estimation and testing method for power-law distributions and some extensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
  • Handle: RePEc:eee:phsmap:v:640:y:2024:i:c:s0378437124002048
    DOI: 10.1016/j.physa.2024.129695
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124002048
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129695?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    2. Luong, Andrew & Doray, Louis G., 1996. "Goodness of fit test statistics for the zeta family," Insurance: Mathematics and Economics, Elsevier, vol. 19(1), pages 45-53, December.
    3. Anna D. Broido & Aaron Clauset, 2019. "Scale-free networks are rare," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Ghaderi, 2020. "Public health interventions in the face of pandemics: network structure, social distancing, and heterogeneity," Economics Working Papers 1732, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Ning-Ning Wang & Zhen Jin & Xiao-Long Peng, 2019. "Community Detection with Self-Adapting Switching Based on Affinity," Complexity, Hindawi, vol. 2019, pages 1-16, November.
    3. Mohammad Ghaderi, 2020. "Public Health Interventions in the Face of Pandemics: Network Structure, Social Distancing, and Heterogeneity," Working Papers 1193, Barcelona School of Economics.
    4. Ghaderi, Mohammad, 2022. "Public health interventions in the face of pandemics: Network structure, social distancing, and heterogeneity," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1016-1031.
    5. Johnston, Josh & Andersen, Tim, 2022. "Random processes with high variance produce scale free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    6. Mohd-Zaid, Fairul & Kabban, Christine M. Schubert & Deckro, Richard F. & White, Edward D., 2017. "Parameter specification for the degree distribution of simulated Barabási–Albert graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 141-152.
    7. Chen, Shu-Heng & Chang, Chia-Ling & Wen, Ming-Chang, 2014. "Social networks and macroeconomic stability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 8, pages 1-40.
    8. Vinayak, & Raghuvanshi, Adarsh & kshitij, Avinash, 2023. "Signatures of capacity development through research collaborations in artificial intelligence and machine learning," Journal of Informetrics, Elsevier, vol. 17(1).
    9. Zhang, Wen-Yao & Wei, Zong-Wen & Wang, Bing-Hong & Han, Xiao-Pu, 2016. "Measuring mixing patterns in complex networks by Spearman rank correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 440-450.
    10. Pi, Xiaochen & Tang, Longkun & Chen, Xiangzhong, 2021. "A directed weighted scale-free network model with an adaptive evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    11. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    12. Long Ma & Xiao Han & Zhesi Shen & Wen-Xu Wang & Zengru Di, 2015. "Efficient Reconstruction of Heterogeneous Networks from Time Series via Compressed Sensing," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-12, November.
    13. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    14. Elias Carroni & Paolo Pin & Simone Righi, 2020. "Bring a Friend! Privately or Publicly?," Management Science, INFORMS, vol. 66(5), pages 2269-2290, May.
    15. Kaihao Liang & Shuliang Li & Wenfeng Zhang & Zhuokui Wu & Jiaying He & Mengmeng Li & Yuling Wang, 2024. "Evolution of Complex Network Topology for Chinese Listed Companies Under the COVID-19 Pandemic," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 1121-1136, March.
    16. Biggiero, Lucio & Angelini, Pier Paolo, 2015. "Hunting scale-free properties in R&D collaboration networks: Self-organization, power-law and policy issues in the European aerospace research area," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 21-43.
    17. Martins, Francisco Leonardo Bezerra & do Nascimento, José Cláudio, 2022. "Power law dynamics in genealogical graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    18. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    19. Dávid Csercsik & Sándor Imre, 2017. "Cooperation and coalitional stability in decentralized wireless networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 64(4), pages 571-584, April.
    20. Baek, Seung Ki & Kim, Tae Young & Kim, Beom Jun, 2008. "Testing a priority-based queue model with Linux command histories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3660-3668.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:640:y:2024:i:c:s0378437124002048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.