IDEAS home Printed from https://ideas.repec.org/p/cri/cespri/wp130.html
   My bibliography  Save this paper

Unveiling the Texture of a European Research Area: Emergence of Oligarchic Networks under EU Framework Programmes

Author

Abstract

The paper provides a contribution to the recent debate about targets and effectivenessof network policies at the EU level, by presenting a detailed analysis of the large R&D network that has emerged over Framework Programmes. Social network analysis and graph theory are employed to describe structural properties and dynamics of the emerging network, which appears to be rather dense and pervasive, branching around a large "oligarchic core", whose centrality and connectivity strengthened over programmes. The paper discusses the degree to which this network structure may respond to EU broad policy objectives of competitiveness and cohesion and its implications for recent programmes aimed at shaping a European Research Area. In particular, attention is placed on the late focus by European institutions on networking centres of excellence. Since future initiatives are to build on the existing fabric of science and technology in Europe, we argue that understanding how networks formed and evolved following previous stimuli is of great relevance for implementing and assessing the impact of the newly defined network approach.

Suggested Citation

  • Stefano Breschi & Lucia Cusmano, 2002. "Unveiling the Texture of a European Research Area: Emergence of Oligarchic Networks under EU Framework Programmes," KITeS Working Papers 130, KITeS, Centre for Knowledge, Internationalization and Technology Studies, Universita' Bocconi, Milano, Italy, revised Jul 2002.
  • Handle: RePEc:cri:cespri:wp130
    as

    Download full text from publisher

    File URL: ftp://ftp.unibocconi.it/pub/RePEc/cri/papers/wp130.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    2. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    2. Long Ma & Xiao Han & Zhesi Shen & Wen-Xu Wang & Zengru Di, 2015. "Efficient Reconstruction of Heterogeneous Networks from Time Series via Compressed Sensing," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-12, November.
    3. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    4. Chen, Qinghua & Shi, Dinghua, 2004. "The modeling of scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 240-248.
    5. Wen, Guanghui & Duan, Zhisheng & Chen, Guanrong & Geng, Xianmin, 2011. "A weighted local-world evolving network model with aging nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 4012-4026.
    6. Baskaran, Thushyanthan & Blöchl, Florian & Brück, Tilman & Theis, Fabian J., 2011. "The Heckscher-Ohlin model and the network structure of international trade," International Review of Economics & Finance, Elsevier, vol. 20(2), pages 135-145, April.
    7. Curado, Manuel & Rodriguez, Rocio & Tortosa, Leandro & Vicent, Jose F., 2022. "Anew centrality measure in dense networks based on two-way random walk betweenness," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    8. Guillaume, Jean-Loup & Latapy, Matthieu, 2006. "Bipartite graphs as models of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 795-813.
    9. Salcedo-Sanz, S. & Cuadra, L., 2019. "Quasi scale-free geographically embedded networks over DLA-generated aggregates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1286-1305.
    10. Dan Braha & Yaneer Bar-Yam, 2004. "Information Flow Structure in Large-Scale Product Development Organizational Networks," Industrial Organization 0407012, University Library of Munich, Germany.
    11. Wu, Jianshe & Jiao, Licheng, 2007. "Synchronization in complex delayed dynamical networks with nonsymmetric coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 513-530.
    12. Coronel-Brizio, H.F. & Hernández-Montoya, A.R., 2010. "The Anderson–Darling test of fit for the power-law distribution from left-censored samples," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3508-3515.
    13. Dan Braha & Yaneer Bar-Yam, 2007. "The Statistical Mechanics of Complex Product Development: Empirical and Analytical Results," Management Science, INFORMS, vol. 53(7), pages 1127-1145, July.
    14. Paul Sheridan & Yuichi Yagahara & Hidetoshi Shimodaira, 2008. "A preferential attachment model with Poisson growth for scale-free networks," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 747-761, December.
    15. Ikeda, N., 2007. "Network formed by traces of random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 701-713.
    16. Zengwang Xu & Daniel Sui, 2007. "Small-world characteristics on transportation networks: a perspective from network autocorrelation," Journal of Geographical Systems, Springer, vol. 9(2), pages 189-205, June.
    17. Guan, Zhi-Hong & Zhang, Hao, 2008. "Stabilization of complex network with hybrid impulsive and switching control," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1372-1382.
    18. Wu, Jianshe & Jiao, Licheng, 2007. "Observer-based synchronization in complex dynamical networks with nonsymmetric coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 469-480.
    19. Li, Wenyuan & Lin, Yongjing & Liu, Ying, 2007. "The structure of weighted small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 708-718.
    20. Jan W. Rivkin & Nicolaj Siggelkow, 2007. "Patterned Interactions in Complex Systems: Implications for Exploration," Management Science, INFORMS, vol. 53(7), pages 1068-1085, July.

    More about this item

    Keywords

    R&D network; technology alliances; European Framework Programmes;
    All these keywords.

    JEL classification:

    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy
    • O52 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Europe

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cri:cespri:wp130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Valerio Sterzi (email available below). General contact details of provider: http://www.kites.unibocconi.it/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.