IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v638y2024ics037843712400150x.html
   My bibliography  Save this article

Modular nudging models: Formulation and identification from real-world traffic data sets

Author

Listed:
  • Li, Jing
  • Liu, Di
  • Baldi, Simone

Abstract

The vehicle nudging behaviour suggests that a vehicle in the traffic flow may induce a ‘pushing effect’ to its preceding vehicle. In other words, while the traditional vehicle-following behaviour results in look-ahead interaction, the nudging behaviour may result in look-behind interaction: the combination of the two effects would result in bidirectional inter-vehicle interactions. Unfortunately, all reported numerical examples and traffic simulators indicating that nudging may improve the traffic flow with artificially engineered nudging behaviour. It is still unclear if such behaviour really occurs and is crucial in our roads. To address this question, this work proposes “modular” nudging models, meaning that the model is able to describe both the look-ahead-only scenario (with only vehicle-following behaviour) and the look-ahead-and-behind scenario (with both vehicle-following and nudging behaviour). We apply this modular philosophy to traditional models (optimal velocity model, intelligent driver model) and to a physics-inspired neural network model. By using the NGSIM real-world traffic data sets, the models suggest that the nudging effect plays a smaller and smaller role as the model accuracy improves.

Suggested Citation

  • Li, Jing & Liu, Di & Baldi, Simone, 2024. "Modular nudging models: Formulation and identification from real-world traffic data sets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
  • Handle: RePEc:eee:phsmap:v:638:y:2024:i:c:s037843712400150x
    DOI: 10.1016/j.physa.2024.129642
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712400150X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129642?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xiangzhou & Shi, Zhongke & Chen, Jianzhong & Ma, lijing, 2023. "A bi-directional visual angle car-following model considering collision sensitivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. An, Shuke & Xu, Liangjie & Qian, Lianghui & Chen, Guojun & Luo, Haoshun & Li, Fu, 2020. "Car-following model for autonomous vehicles and mixed traffic flow analysis based on discrete following interval," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    3. Montanino, Marcello & Punzo, Vincenzo, 2015. "Trajectory data reconstruction and simulation-based validation against macroscopic traffic patterns," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 82-106.
    4. Ding, Heng & Pan, Hao & Bai, Haijian & Zheng, Xiaoyan & Chen, Jin & Zhang, Weihua, 2022. "Driving strategy of connected and autonomous vehicles based on multiple preceding vehicles state estimation in mixed vehicular traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    2. Hossain, Md. Anowar & Tanimoto, Jun, 2022. "A microscopic traffic flow model for sharing information from a vehicle to vehicle by considering system time delay effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    3. Yin, Yu-Hang & Lü, Xing & Jiang, Rui & Jia, Bin & Gao, Ziyou, 2024. "Kinetic analysis and numerical tests of an adaptive car-following model for real-time traffic in ITS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    4. Ruru Hao & Tiancheng Ruan, 2024. "Advancing Traffic Simulation Precision and Scalability: A Data-Driven Approach Utilizing Deep Neural Networks," Sustainability, MDPI, vol. 16(7), pages 1-16, March.
    5. Zhai, Cong & Li, Kening & Zhang, Ronghui & Peng, Tao & Zong, Changfu, 2024. "Phase diagram in multi-phase heterogeneous traffic flow model integrating the perceptual range difference under human-driven and connected vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    6. Sharma, Anshuman & Zheng, Zuduo & Bhaskar, Ashish, 2019. "Is more always better? The impact of vehicular trajectory completeness on car-following model calibration and validation," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 49-75.
    7. Dai, Yulu & Yang, Yuwei & Wang, Zhiyuan & Luo, YinJie, 2022. "Exploring the impact of damping on Connected and Autonomous Vehicle platoon safety with CACC," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    8. Zhou, Yang & Ahn, Soyoung & Wang, Meng & Hoogendoorn, Serge, 2020. "Stabilizing mixed vehicular platoons with connected automated vehicles: An H-infinity approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 152-170.
    9. Zhang, Xiangzhou & Shi, Zhongke & Yang, Qiaoli & An, Xiaodong, 2024. "Impacts of visuo-spatial working memory on the dynamic performance and safety of car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    10. Qi, Weiwei & Ma, Siwei & Fu, Chuanyun, 2023. "An improved car-following model considering the influence of multiple preceding vehicles in the same and two adjacent lanes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).
    11. Montanino, Marcello & Monteil, Julien & Punzo, Vincenzo, 2021. "From homogeneous to heterogeneous traffic flows: Lp String stability under uncertain model parameters," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 136-154.
    12. Ding, Heng & Zhang, Lang & Chen, Jin & Zheng, Xiaoyan & Pan, Hao & Zhang, Weihua, 2023. "MPC-based dynamic speed control of CAVs in multiple sections upstream of the bottleneck area within a mixed vehicular environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    13. Ronan Keane & H. Oliver Gao, 2021. "Fast Calibration of Car-Following Models to Trajectory Data Using the Adjoint Method," Transportation Science, INFORMS, vol. 55(3), pages 592-615, May.
    14. Weihan Chen & Gang Ren & Qi Cao & Jianhua Song & Yikun Liu & Changyin Dong, 2023. "A Game-Theory-Based Approach to Modeling Lane-Changing Interactions on Highway On-Ramps: Considering the Bounded Rationality of Drivers," Mathematics, MDPI, vol. 11(2), pages 1-16, January.
    15. Andrea Gemma & Tina Onorato & Stefano Carrese, 2023. "Performances and Environmental Impacts of Connected and Autonomous Vehicles for Different Mixed-Traffic Scenarios," Sustainability, MDPI, vol. 15(13), pages 1-19, June.
    16. Dong, Jiakuan & Luo, Dongyu & Gao, Zhijun & Wang, Jiangfeng & Chen, Lei, 2023. "Benefit of connectivity on promoting stability and capacity of traffic flow in automation era: An analytical and numerical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    17. Ammar Jafaripournimchahi & Yingfeng Cai & Hai Wang & Lu Sun, 2022. "Environmental Analyses of Delayed-Feedback Control Effects in Continuum-Traffic Flow of Autonomous Vehicles," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    18. Coifman, Benjamin & Li, Lizhe, 2017. "A critical evaluation of the Next Generation Simulation (NGSIM) vehicle trajectory dataset," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 362-377.
    19. Wang, Shutong & Zhu, Wen-Xing, 2022. "Modeling the heterogeneous traffic flow considering mean expected velocity field and effect of two-lane communication under connected environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    20. Peng, Guanghan & Luo, Chunli & Zhao, Hongzhuan & Tan, Huili, 2024. "Phase transitions of dual-lane lattice model incorporating cyber-attacks on lane change involving inflow and outflow under connected vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:638:y:2024:i:c:s037843712400150x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.