IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v635y2024ics0378437124000086.html
   My bibliography  Save this article

Thermo-inspired model of self-propelled hard disk agents for heterogeneous bidirectional pedestrian flow

Author

Listed:
  • Rangel-Galván, Maricruz
  • Ballinas-Hernández, Ana L.
  • Rangel-Galván, Violeta

Abstract

The aim of this work is to present a hybrid pedestrian model that describes the bidirectional walking of crowds in a corridor. The self-propelled hard disk model combines both perceptual as well as decision-making characteristics of situated agents. This model considers homogeneous and heterogeneous groups with relaxed, standard, and hurried pedestrian profiles according to their walking preferences. The situated agent perception module considers one radius in the base model, while the extended model considers three radii to improve the pedestrian evasion rules. We have explored the corresponding changes in the formation of spatial walking patterns. The findings include comparative variations in the formation of following lanes, the time-based evolution of crowds in both homogeneous and heterogeneous groups, and the transition from transient traffic jams to the appearance of segregation waves emerging from self-organization mechanisms. In this point, we propose a thermodynamics-inspired model associated with the collective behavior of pedestrians. A macroscopic ideal gas-type equation of state is established to define the dependence between volume, pressure, and temperature of pedestrian crowds in counterflow. To achieve this goal, the temperature, defined as T∼vα¯ where v is the walking speed of individual pedestrians, must possess an α parameter in the interval [1,2]. The experimental simulations include binary contact interactions and collisions of pedestrians with the corridor borders. The macroscopic description of the model inspired by thermodynamics can be complemented with the usual analysis of the fundamental diagram.

Suggested Citation

  • Rangel-Galván, Maricruz & Ballinas-Hernández, Ana L. & Rangel-Galván, Violeta, 2024. "Thermo-inspired model of self-propelled hard disk agents for heterogeneous bidirectional pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
  • Handle: RePEc:eee:phsmap:v:635:y:2024:i:c:s0378437124000086
    DOI: 10.1016/j.physa.2024.129500
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124000086
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    2. Cristiani, E. & Menci, M. & Malagnino, A. & Amaro, G.G., 2023. "An all-densities pedestrian simulator based on a dynamic evaluation of the interpersonal distances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    3. Sun, Yi, 2019. "Simulations of bi-direction pedestrian flow using kinetic Monte Carlo methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 519-531.
    4. Kaji, Masaru & Inohara, Takehiro, 2017. "Cellular automaton simulation of unidirectional pedestrians flow in a corridor to reproduce the unique velocity profile of Hagen–Poiseuille flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 85-95.
    5. Moustaid, Elhabib & Flötteröd, Gunnar, 2021. "Macroscopic model of multidirectional pedestrian network flows," Transportation Research Part B: Methodological, Elsevier, vol. 145(C), pages 1-23.
    6. Dawei Zhang & Haitao Zhu & Shi Qiu & Boyan Wang, 2019. "Characterization of Collision Avoidance in Pedestrian Crowds," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-9, March.
    7. Cong Zhai & Weitiao Wu, 2020. "A new lattice hydrodynamic model for bidirectional pedestrian flow with consideration of pedestrians’ honk effect," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 31(02), pages 1-16, February.
    8. Ujjal Chattaraj & Armin Seyfried & Partha Chakroborty, 2009. "Comparison Of Pedestrian Fundamental Diagram Across Cultures," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 393-405.
    9. Xu Chen & Martin Treiber & Venkatesan Kanagaraj & Haiying Li, 2018. "Social force models for pedestrian traffic – state of the art," Transport Reviews, Taylor & Francis Journals, vol. 38(5), pages 625-653, September.
    10. Sun, Yi, 2020. "Kinetic Monte Carlo simulations of bi-direction pedestrian flow with different walk speeds," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    11. Zhai, Cong & Wu, Weitiao & Xiao, Yingping & Luo, Qiang & Zhang, Yusong, 2022. "Modeling bidirectional pedestrian flow with the perceived uncertainty of preceding pedestrian information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    12. Zhao, Xuedan & Xia, Long & Zhang, Jun & Song, Weiguo, 2020. "Artificial neural network based modeling on unidirectional and bidirectional pedestrian flow at straight corridors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    13. Ana Luisa Ballinas-Hernández & Angélica Muñoz-Meléndez & Alejandro Rangel-Huerta, 2011. "Multiagent System Applied to the Modeling and Simulation of Pedestrian Traffic in Counterflow," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 14(3), pages 1-2.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Jiangtao & Li, Xingli & Guo, Qinghua & Kuang, Hua, 2024. "Dynamics characteristic of pedestrians’ particular overtaking behavior based on an improved social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    2. Hu, Xiangmin & Chen, Tao & Deng, Kaifeng & Wang, Guanning, 2023. "Effects of aggressiveness on pedestrian room evacuation using extended cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    3. Tamang, Nutthavuth & Sun, Yi, 2023. "Application of the dynamic Monte Carlo method to pedestrian evacuation dynamics," Applied Mathematics and Computation, Elsevier, vol. 445(C).
    4. Li, Zexu & Fang, Lei, 2024. "On the ideal gas law for crowds with high pressure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    5. Ma, Liang & Chen, Bin & Wang, Xiaodong & Zhu, Zhengqiu & Wang, Rongxiao & Qiu, Xiaogang, 2019. "The analysis on the desired speed in social force model using a data driven approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 894-911.
    6. Jiang, Yan-Qun & Zhou, Shu-Guang & Duan, Ya-Li & Huang, Xiao-Qian, 2023. "A viscous continuum model with smoke effect for pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    7. Banerjee, Arunabha & Das, Sanhita & Maurya, Akhilesh Kumar, 2024. "Behavioural characteristics influencing walking speed of pedestrians over elevated facilities: A case study of India," Transport Policy, Elsevier, vol. 147(C), pages 169-182.
    8. Cui, Geng & Yanagisawa, Daichi & Nishinari, Katsuhiro, 2023. "Learning from experimental data to simulate pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    9. Liu, Yixue & Mao, Zhanli, 2022. "An experimental study on the critical state of herd behavior in decision-making of the crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    10. Zeng, Guang & Ye, Rui & Zhang, Jun & Cao, Shuchao & Song, Weiguo, 2023. "Macroscopic and microscopic movement properties of the fast walking pedestrian flow with single-file experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    11. Guo, Ning & Jiang, Rui & Wong, S.C. & Hao, Qing-Yi & Xue, Shu-Qi & Xiao, Yao & Wu, Chao-Yun, 2020. "Modeling the interactions of pedestrians and cyclists in mixed flow conditions in uni- and bidirectional flows on a shared pedestrian-cycle road," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 259-284.
    12. Tianran Han & Jianming Zhao & Wenquan Li, 2020. "Smart-Guided Pedestrian Emergency Evacuation in Slender-Shape Infrastructure with Digital Twin Simulations," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    13. Liu, Qiujia & Lu, Linjun & Zhang, Yijing & Hu, Miaoqing, 2022. "Modeling the dynamics of pedestrian evacuation in a complex environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    14. Zeng, Tian & Wei, Yidong & Hu, Zuoan & Ma, Yi, 2023. "Comparison study in single-file pedestrian flow dynamics: Foot motion perspective versus head motion perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    15. Zhang, Hui & Xu, Jie & Jia, Limin & Shi, Yihan, 2022. "Modelling the walking behavior of pedestrians in the junction with chamfer zone of subway station," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    16. Lu, Peng & Wen, Feier & Li, Yan & Chen, Dianhan, 2021. "Multi-agent modeling of crowd dynamics under mass shooting cases," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    17. Guo, Ning & Ling, Xiang & Ding, Zhongjun & Long, Jiancheng & Zhu, Kongjin, 2019. "An improved heuristic-based model to reproduce pedestrian dynamic on the single-file staircase," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    18. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    19. Constanza Flores & Han Soo Lee & Erick Mas, 2024. "Understanding Tsunami Evacuation via a Social Force Model While Considering Stress Levels Using Agent-Based Modelling," Sustainability, MDPI, vol. 16(10), pages 1-20, May.
    20. Wang, Weili & Zhang, Jingjing & Li, Haicheng & Xie, Qimiao, 2020. "Experimental study on unidirectional pedestrian flows in a corridor with a fixed obstacle and a temporary obstacle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:635:y:2024:i:c:s0378437124000086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.