IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9237674.html
   My bibliography  Save this article

Characterization of Collision Avoidance in Pedestrian Crowds

Author

Listed:
  • Dawei Zhang
  • Haitao Zhu
  • Shi Qiu
  • Boyan Wang

Abstract

The avoidance behavior of pedestrians was characterized in the present paper by simulating the movement of crowds in both unidirectional and bidirectional pedestrian flow. A phase change of alternative lane formation observed in real bidirectional pedestrian flows has been studied, where pedestrians tended to evade individuals in counterflow and simultaneously keep a certain distance from each other in the uniform pedestrian flow when the counterflow disappeared. What is more, the comparison between the effect of evading and pushing behavior on evacuation has been investigated in the room egress scenario. Additionally, the evading and overtaking behavior of fast pedestrians have also been simulated in heterogeneous crowds. The performance of the proposed model was compared to the experimental data and the results obtained using other evacuation models. Numerical results showed that both the phase change of alternative lane formation in bidirectional pedestrian flow and the effective evading behavior in unidirectional pedestrian flow were conductive to reduce the evacuation time of pedestrian crowds. Even though pushing behavior of fast pedestrians seemed to improve the flow through the wide exit, it might lead to the panic and other negative effect on the crowds, such as crowds trample. The proposed model in this paper could provide a theoretical basis for the pedestrian crowd management during emergency evacuation.

Suggested Citation

  • Dawei Zhang & Haitao Zhu & Shi Qiu & Boyan Wang, 2019. "Characterization of Collision Avoidance in Pedestrian Crowds," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-9, March.
  • Handle: RePEc:hin:jnlmpe:9237674
    DOI: 10.1155/2019/9237674
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/9237674.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/9237674.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/9237674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Banerjee, Arunabha & Das, Sanhita & Maurya, Akhilesh Kumar, 2024. "Behavioural characteristics influencing walking speed of pedestrians over elevated facilities: A case study of India," Transport Policy, Elsevier, vol. 147(C), pages 169-182.
    2. Rangel-Galván, Maricruz & Ballinas-Hernández, Ana L. & Rangel-Galván, Violeta, 2024. "Thermo-inspired model of self-propelled hard disk agents for heterogeneous bidirectional pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9237674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.