IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v632y2023ip1s0378437123009123.html
   My bibliography  Save this article

Measuring dependence structure and extreme risk spillovers in stock markets: An APARCH-EVT-DMC approach

Author

Listed:
  • Wei, Zhengyuan
  • He, Qingxia
  • Zhou, Qili
  • Wang, Ge

Abstract

A new APARCH-extreme value theory-dynamic mixture copula (APARCH-EVT-DMC) approach is proposed to investigate the dependence structure and risk spillovers. This method can illuminate the dynamic and complex tail dependence among stock markets. By analyzing the dynamic extreme risk spillovers in stock markets from China to G20 countries for the period from January 4, 2007 to February 7, 2023, firstly, our empirical results indicate that the EVT model is considerably better than the alternative model in fitting the tail distribution and the new DMC models outperform available copula models. Furthermore, the Russian and Argentine stock markets present the largest upside and downside risk spillovers for developed and emerging markets, respectively. Upside and downside risk spillovers from China to Canada and Saudi Arabia stock markets are the smallest for the two types of markets. Our results also provide evidence that upside and downside risk spillovers exhibit asymmetry, or more precisely, the downside risk spillovers are larger than the upside risk spillovers with exceptions in Brazil. Finally, the dynamic risk spillovers display heterogeneity and significant differences across countries.

Suggested Citation

  • Wei, Zhengyuan & He, Qingxia & Zhou, Qili & Wang, Ge, 2023. "Measuring dependence structure and extreme risk spillovers in stock markets: An APARCH-EVT-DMC approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
  • Handle: RePEc:eee:phsmap:v:632:y:2023:i:p1:s0378437123009123
    DOI: 10.1016/j.physa.2023.129357
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123009123
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129357?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aloui, Riadh & Ben Jabeur, Sami & Mefteh-Wali, Salma, 2022. "Tail-risk spillovers from China to G7 stock market returns during the COVID-19 outbreak: A market and sectoral analysis," Research in International Business and Finance, Elsevier, vol. 62(C).
    2. Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016. "TENET: Tail-Event driven NETwork risk," Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
    3. Syed Jawad Hussain Shahzad & Elie Bouri & Ladislav Kristoufek & Tareq Saeed, 2021. "Impact of the COVID-19 outbreak on the US equity sectors: Evidence from quantile return spillovers," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-23, December.
    4. Battaglia, Francesca & Gallo, Angela, 2013. "Securitization and systemic risk: An empirical investigation on Italian banks over the financial crisis," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 274-286.
    5. Rehman, Mobeen Ur & Katsiampa, Paraskevi & Zeitun, Rami & Vo, Xuan Vinh, 2023. "Conditional dependence structure and risk spillovers between Bitcoin and fiat currencies," Emerging Markets Review, Elsevier, vol. 55(C).
    6. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    7. Albulescu, Claudiu Tiberiu & Aubin, Christian & Goyeau, Daniel & Tiwari, Aviral Kumar, 2018. "Extreme co-movements and dependencies among major international exchange rates: A copula approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 56-69.
    8. Xu, Qiuhua & Yan, Haoyang & Zhao, Tianyu, 2022. "Contagion effect of systemic risk among industry sectors in China’s stock market," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    9. Yang, Kun & Wei, Yu & He, Jianmin & Li, Shouwei, 2019. "Dependence and risk spillovers between mainland China and London stock markets before and after the Stock Connect programs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    10. Wang, Lu & Ma, Feng & Niu, Tianjiao & He, Chengting, 2020. "Crude oil and BRICS stock markets under extreme shocks: New evidence," Economic Modelling, Elsevier, vol. 86(C), pages 54-68.
    11. Chebbi, Ali & Hedhli, Amel, 2022. "Revisiting the accuracy of standard VaR methods for risk assessment: Using the Copula–EVT multidimensional approach for stock markets in the MENA region," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 430-445.
    12. Tian, Maoxi & Alshater, Muneer M. & Yoon, Seong-Min, 2022. "Dynamic risk spillovers from oil to stock markets: Fresh evidence from GARCH copula quantile regression-based CoVaR model," Energy Economics, Elsevier, vol. 115(C).
    13. Ji, Qiang & Liu, Bing-Yue & Zhao, Wan-Li & Fan, Ying, 2020. "Modelling dynamic dependence and risk spillover between all oil price shocks and stock market returns in the BRICS," International Review of Financial Analysis, Elsevier, vol. 68(C).
    14. Karmakar, Madhusudan & Paul, Samit, 2019. "Intraday portfolio risk management using VaR and CVaR:A CGARCH-EVT-Copula approach," International Journal of Forecasting, Elsevier, vol. 35(2), pages 699-709.
    15. Julia Kielmann & Hans Manner & Aleksey Min, 2022. "Stock market returns and oil price shocks: A CoVaR analysis based on dynamic vine copula models," Empirical Economics, Springer, vol. 62(4), pages 1543-1574, April.
    16. Yaya, OlaOluwa S. & Ogbonna, Ahamuefula E. & Adesina, Oluwaseun A. & Alobaloke, Kafayat A. & Vo, Xuan Vinh, 2022. "Time-variation between metal commodities and oil, and the impact of oil shocks: GARCH-MIDAS and DCC-MIDAS analyses," Resources Policy, Elsevier, vol. 79(C).
    17. Trabelsi, Nader & Naifar, Nader, 2017. "Are Islamic stock indexes exposed to systemic risk? Multivariate GARCH estimation of CoVaR," Research in International Business and Finance, Elsevier, vol. 42(C), pages 727-744.
    18. Wang, Haiying & Yuan, Ying & Li, Yiou & Wang, Xunhong, 2021. "Financial contagion and contagion channels in the forex market: A new approach via the dynamic mixture copula-extreme value theory," Economic Modelling, Elsevier, vol. 94(C), pages 401-414.
    19. Liu, Xueyong & An, Haizhong & Li, Huajiao & Chen, Zhihua & Feng, Sida & Wen, Shaobo, 2017. "Features of spillover networks in international financial markets: Evidence from the G20 countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 265-278.
    20. Tiwari, Aviral Kumar & Raheem, Ibrahim Dolapo & Kang, Sang Hoon, 2019. "Time-varying dynamic conditional correlation between stock and cryptocurrency markets using the copula-ADCC-EGARCH model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    21. Kang, Sang Hoon & Yoon, Seong-Min, 2019. "Financial crises and dynamic spillovers among Chinese stock and commodity futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    22. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    23. Zhang, Xiaoming & Zhang, Tong & Lee, Chien-Chiang, 2022. "The path of financial risk spillover in the stock market based on the R-vine-Copula model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    24. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    25. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    26. Gang-Jin Wang & Chi Xie & H. Eugene Stanley, 2018. "Correlation Structure and Evolution of World Stock Markets: Evidence from Pearson and Partial Correlation-Based Networks," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 607-635, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xu & Lv, Zhiyu & Naeem, Muhammad Abubakr & Rauf, Abdul & Liu, Jiawen, 2024. "Decomposing risk spillover effect in international stock market: A novel intertemporal network topology approach," Finance Research Letters, Elsevier, vol. 63(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Yun-Shi & Dai, Peng-Fei & Zhou, Wei-Xing, 2023. "Tail dependence structure and extreme risk spillover effects between the international agricultural futures and spot markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    2. Zouheir Mighri, 2018. "On the Dynamic Linkages Among International Emerging Currencies," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(2), pages 427-473, June.
    3. Prince Osei Mensah & Anokye M. Adam, 2020. "Copula-Based Assessment of Co-Movement and Tail Dependence Structure Among Major Trading Foreign Currencies in Ghana," Risks, MDPI, vol. 8(2), pages 1-20, June.
    4. Liu, Bing-Yue & Fan, Ying & Ji, Qiang & Hussain, Nazim, 2022. "High-dimensional CoVaR network connectedness for measuring conditional financial contagion and risk spillovers from oil markets to the G20 stock system," Energy Economics, Elsevier, vol. 105(C).
    5. Zhou, Xinmiao & Qian, Huanhuan & Pérez-Rodríguez, Jorge. V. & González López-Valcárcel, Beatriz, 2020. "Risk dependence and cointegration between pharmaceutical stock markets: The case of China and the USA," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    6. Riadh El Abed, 2017. "On the Co-movements among East Asian Foreign Exchange Markets: A Multivariate FIAPARCH-DCC approach," Economics Bulletin, AccessEcon, vol. 37(3), pages 2247-2259.
    7. Chen, Yan & Wang, Gang-Jin & Zhu, You & Xie, Chi & Uddin, Gazi Salah, 2023. "Quantile connectedness and the determinants between FinTech and traditional financial institutions: Evidence from China," Global Finance Journal, Elsevier, vol. 58(C).
    8. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2021. "The impact of Euro through time: Exchange rate dynamics under different regimes," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1375-1408, January.
    9. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    10. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    11. Erick Treviño Aguilar, 2020. "The interdependency structure in the Mexican stock exchange: A network approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-31, October.
    12. Hafner, Christian M. & Linton, Oliver, 2010. "Efficient estimation of a multivariate multiplicative volatility model," Journal of Econometrics, Elsevier, vol. 159(1), pages 55-73, November.
    13. Kitamura, Yoshihiro, 2010. "Testing for intraday interdependence and volatility spillover among the euro, the pound and the Swiss franc markets," Research in International Business and Finance, Elsevier, vol. 24(2), pages 158-171, June.
    14. Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).
    15. Tiwari, Aviral Kumar & Adewuyi, Adeolu O. & Albulescu, Claudiu T. & Wohar, Mark E., 2020. "Empirical evidence of extreme dependence and contagion risk between main cryptocurrencies," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    16. Hofert, Marius & Prasad, Avinash & Zhu, Mu, 2022. "Multivariate time-series modeling with generative neural networks," Econometrics and Statistics, Elsevier, vol. 23(C), pages 147-164.
    17. repec:hum:wpaper:sfb649dp2012-034 is not listed on IDEAS
    18. S Zhang & I Paya & D Peel, 2009. "Linkages between Shanghai and Hong Kong stock indices," Working Papers 599248, Lancaster University Management School, Economics Department.
    19. Garcia-Jorcano, Laura & Benito, Sonia, 2020. "Studying the properties of the Bitcoin as a diversifying and hedging asset through a copula analysis: Constant and time-varying," Research in International Business and Finance, Elsevier, vol. 54(C).
    20. Zouheir Mighri & Faysal Mansouri, 2014. "Modeling international stock market contagion using multivariate fractionally integrated APARCH approach," Cogent Economics & Finance, Taylor & Francis Journals, vol. 2(1), pages 1-25, December.
    21. Zhou, Wei & Chen, Yan & Chen, Jin, 2022. "Risk spread in multiple energy markets: Extreme volatility spillover network analysis before and during the COVID-19 pandemic," Energy, Elsevier, vol. 256(C).

    More about this item

    Keywords

    Dependence structure; Risk spillovers; APARCH-EVT; Dynamic mixture copula; CoVaR;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:632:y:2023:i:p1:s0378437123009123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.