IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v629y2023ics0378437123007732.html
   My bibliography  Save this article

Mining of interactions between travel demand and land use mixture using multi-source data

Author

Listed:
  • Sun, Lu
  • Liu, Xinmin

Abstract

Urban spatial structure refers to the relative location relationship and spatial feature formed by the interaction of various elements of the city through its internal mechanism, which is the accumulation of human spatial activities and location selection in the long-term process. The traditional traffic flow begins to transform into a new type of intelligent network mixed traffic flow. In order to explore the coupling coordination relationship between travel demand and land use mixture, multi-source data are used for modeling for travel demand and land use respectively in this paper. A land use mixture identification methodology is proposed based on Shannon’s information entropy weight method, and realizes the intrinsic association of the previous two variables. Taking a case study of Qingdao, China, the results indicate that the dynamic spatio-temporal distribution of taxi travel demand is imbalanced, and hotspots are mostly distributed in transportation hubs and business circles. It also found that the coupling coordination of the land use mixture and travel demand inside the city are spatial heterogeneity and imbalanced. The higher land use mixture attracts more trips, and it is more significant at weekends. The results can provide policy makers with a quantitative method for evaluating the relative spatial gaps for land use intensity to attract more trips.

Suggested Citation

  • Sun, Lu & Liu, Xinmin, 2023. "Mining of interactions between travel demand and land use mixture using multi-source data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
  • Handle: RePEc:eee:phsmap:v:629:y:2023:i:c:s0378437123007732
    DOI: 10.1016/j.physa.2023.129218
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123007732
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129218?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    2. Xing, Yingying & Zhou, Huiyu & Han, Xiao & Zhang, Meng & Lu, Jian, 2022. "What influences vulnerable road users’ perceptions of autonomous vehicles? A comparative analysis of the 2017 and 2019 Pittsburgh surveys," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    3. Gordon, Peter & Kumar, Ajay & Richardson, Harry W., 1989. "The influence of metropolitan spatial structure on commuting time," Journal of Urban Economics, Elsevier, vol. 26(2), pages 138-151, September.
    4. Ying Long & Xingjian Liu, 2013. "Featured Graphic. How Mixed is Beijing, China? A Visual Exploration of Mixed Land Use," Environment and Planning A, , vol. 45(12), pages 2797-2798, December.
    5. Bruce Schaller, 1999. "Elasticities for taxicab fares and service availability," Transportation, Springer, vol. 26(3), pages 283-297, August.
    6. Aurbacher, Joachim & Dabbert, Stephan, 2011. "Generating crop sequences in land-use models using maximum entropy and Markov chains," Agricultural Systems, Elsevier, vol. 104(6), pages 470-479, July.
    7. Tao, Sui & Rohde, David & Corcoran, Jonathan, 2014. "Examining the spatial–temporal dynamics of bus passenger travel behaviour using smart card data and the flow-comap," Journal of Transport Geography, Elsevier, vol. 41(C), pages 21-36.
    8. Zhang, Shen & Tang, Jinjun & Wang, Haixiao & Wang, Yinhai & An, Shi, 2017. "Revealing intra-urban travel patterns and service ranges from taxi trajectories," Journal of Transport Geography, Elsevier, vol. 61(C), pages 72-86.
    9. Cervero, Robert & Landis, John, 1997. "Twenty years of the Bay Area Rapid Transit system: Land use and development impacts," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(4), pages 309-333, July.
    10. Pan, Haozhi & Deal, Brian & Chen, Yan & Hewings, Geoffrey, 2018. "A Reassessment of urban structure and land-use patterns: distance to CBD or network-based? — Evidence from Chicago," Regional Science and Urban Economics, Elsevier, vol. 70(C), pages 215-228.
    11. Liu, Xi & Gong, Li & Gong, Yongxi & Liu, Yu, 2015. "Revealing travel patterns and city structure with taxi trip data," Journal of Transport Geography, Elsevier, vol. 43(C), pages 78-90.
    12. Krause, Cory M. & Zhang, Lei, 2019. "Short-term travel behavior prediction with GPS, land use, and point of interest data," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 349-361.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanyan Chen & Zheng Zhang & Tianwen Liang, 2019. "Assessing Urban Travel Patterns: An Analysis of Traffic Analysis Zone-Based Mobility Patterns," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    2. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    3. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    4. Yang, Zhuo & Franz, Mark L. & Zhu, Shanjiang & Mahmoudi, Jina & Nasri, Arefeh & Zhang, Lei, 2018. "Analysis of Washington, DC taxi demand using GPS and land-use data," Journal of Transport Geography, Elsevier, vol. 66(C), pages 35-44.
    5. Zhao, Pengxiang & Kwan, Mei-Po & Qin, Kun, 2017. "Uncovering the spatiotemporal patterns of CO2 emissions by taxis based on Individuals' daily travel," Journal of Transport Geography, Elsevier, vol. 62(C), pages 122-135.
    6. Tong Zhou & Xintao Liu & Zhen Qian & Haoxuan Chen & Fei Tao, 2019. "Dynamic Update and Monitoring of AOI Entrance via Spatiotemporal Clustering of Drop-Off Points," Sustainability, MDPI, vol. 11(23), pages 1-20, December.
    7. Bao, Jie & Yang, Zhao & Zeng, Weili & Shi, Xiaomeng, 2021. "Exploring the spatial impacts of human activities on urban traffic crashes using multi-source big data," Journal of Transport Geography, Elsevier, vol. 94(C).
    8. Zhang, Xiaohu & Xu, Yang & Tu, Wei & Ratti, Carlo, 2018. "Do different datasets tell the same story about urban mobility — A comparative study of public transit and taxi usage," Journal of Transport Geography, Elsevier, vol. 70(C), pages 78-90.
    9. Cai, Hua & Zhan, Xiaowei & Zhu, Ji & Jia, Xiaoping & Chiu, Anthony S.F. & Xu, Ming, 2016. "Understanding taxi travel patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 590-597.
    10. Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2022. "Revealing mobility pattern of taxi movements with its travel trajectory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    11. He, Zhengbing, 2020. "Spatial-temporal fractal of urban agglomeration travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    12. Cheng, Long & Cai, Xinmei & Liu, Zhuo & Huang, Zhiren & Chen, Wendong & Witlox, Frank, 2024. "Characterising travel behaviour patterns of transport hub station area users using mobile phone data," Journal of Transport Geography, Elsevier, vol. 116(C).
    13. Miaoyi Li & Lei Dong & Zhenjiang Shen & Wei Lang & Xinyue Ye, 2017. "Examining the Interaction of Taxi and Subway Ridership for Sustainable Urbanization," Sustainability, MDPI, vol. 9(2), pages 1-12, February.
    14. Ruixi Dong & Fengying Yan, 2021. "Revealing Characteristics of the Spatial Structure of Megacities at Multiple Scales with Jobs-Housing Big Data: A Case Study of Tianjin, China," Land, MDPI, vol. 10(11), pages 1-20, October.
    15. Rongxiang Su & Zhixiang Fang & Ningxin Luo & Jingwei Zhu, 2018. "Understanding the Dynamics of the Pick-Up and Drop-Off Locations of Taxicabs in the Context of a Subsidy War among E-Hailing Apps," Sustainability, MDPI, vol. 10(4), pages 1-24, April.
    16. Williams, Sarah & White, Adam & Waiganjo, Peter & Orwa, Daniel & Klopp, Jacqueline, 2015. "The digital matatu project: Using cell phones to create an open source data for Nairobi's semi-formal bus system," Journal of Transport Geography, Elsevier, vol. 49(C), pages 39-51.
    17. Kim, Kyoungok, 2018. "Exploring the difference between ridership patterns of subway and taxi: Case study in Seoul," Journal of Transport Geography, Elsevier, vol. 66(C), pages 213-223.
    18. Yuhui Zhao & Xinyan Zhu & Wei Guo & Bing She & Han Yue & Ming Li, 2019. "Exploring the Weekly Travel Patterns of Private Vehicles Using Automatic Vehicle Identification Data: A Case Study of Wuhan, China," Sustainability, MDPI, vol. 11(21), pages 1-17, November.
    19. Jeong-Hui Park & Eunhye Yoo & Youngdeok Kim & Jung-Min Lee, 2021. "What Happened Pre- and during COVID-19 in South Korea? Comparing Physical Activity, Sleep Time, and Body Weight Status," IJERPH, MDPI, vol. 18(11), pages 1-13, May.
    20. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:629:y:2023:i:c:s0378437123007732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.