IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v621y2023ics0378437123003242.html
   My bibliography  Save this article

A generative model for vehicular travel time distribution prediction considering spatial and temporal correlations

Author

Listed:
  • Shao, Feng
  • Shao, Hu
  • Wang, Dongle
  • Lam, William H.K.
  • Cao, Shuhan

Abstract

Vehicular travel time distributions (TTDs) are of great importance for traffic management and control, and various probability distributions have been used for TTD prediction in previous studies. However, it is difficult to determine a generalized probability distribution of vehicular travel times on urban roads that is applicable to all traffic conditions in real situations. To solve this problem, this paper develops a machine learning-based generative model, named the travel time distribution prediction-generative adversarial network (TTDP-GAN) model, that uses license plate recognition data for TTD prediction. The TTDP-GAN model generates samples of predicted travel time to account for its probability distribution, and these samples are not based on any assumed distribution. In addition, the TTDP-GAN model considers the spatial and temporal correlations of the TTD predictions by applying the multi-head spatial and temporal self-attentions, structural similarity index measure (SSIM), and long short-term memory (LSTM) neural networks. The performance of the TTDP-GAN model is demonstrated in a case study of an urban road network in a medium-sized city in China. The results show that the TTDP-GAN model outperforms several state-of-art machine learning models (e.g., an LSTM neural network model, a GAN model, a Wasserstein GAN model, and an LSTM-GAN model) in the measurement of Jensen–Shannon (JS) divergence and in terms of mean, standard deviation, skewness, and kurtosis. In addition, the TTDP-GAN model with the SSIM has 21.43% better predictive accuracy for JS divergence than the TTDP-GAN model without SSIM. These results demonstrate that the adoption of SSIM is efficient in capturing the probability distribution for TTD prediction. A sensitivity analysis is also carried out to showcase the performance of the TTDP-GAN model in applications.

Suggested Citation

  • Shao, Feng & Shao, Hu & Wang, Dongle & Lam, William H.K. & Cao, Shuhan, 2023. "A generative model for vehicular travel time distribution prediction considering spatial and temporal correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
  • Handle: RePEc:eee:phsmap:v:621:y:2023:i:c:s0378437123003242
    DOI: 10.1016/j.physa.2023.128769
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123003242
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128769?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramezani, Mohsen & Geroliminis, Nikolas, 2012. "On the estimation of arterial route travel time distribution with Markov chains," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1576-1590.
    2. Chen, Xinqiang & Chen, Huixing & Yang, Yongsheng & Wu, Huafeng & Zhang, Wenhui & Zhao, Jiansen & Xiong, Yong, 2021. "Traffic flow prediction by an ensemble framework with data denoising and deep learning model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    3. Lv, Wei & Zhou, Xu & Fang, Zhiming & Huo, Feizhou & Li, Xiaolian, 2019. "Simulation study of vehicle travel time on route with signals considering comprehensive influencing factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 530(C).
    4. Fiems, Dieter & Prabhu, Balakrishna & De Turck, Koen, 2019. "Travel times, rational queueing and the macroscopic fundamental diagram of traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 412-421.
    5. Tang, Jinjun & Hu, Jin & Hao, Wei & Chen, Xinqiang & Qi, Yong, 2020. "Markov Chains based route travel time estimation considering link spatio-temporal correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Hou, Qinzhong & Leng, Junqiang & Ma, Guosheng & Liu, Weiyi & Cheng, Yuxing, 2019. "An adaptive hybrid model for short-term urban traffic flow prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    7. Robert B. Noland & John W. Polak, 2002. "Travel time variability: A review of theoretical and empirical issues," Transport Reviews, Taylor & Francis Journals, vol. 22(1), pages 39-54, January.
    8. Serin, Faruk & Alisan, Yigit & Kece, Adnan, 2021. "Hybrid time series forecasting methods for travel time prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
    9. Yang, Lixing & Zhou, Xuesong, 2017. "Optimizing on-time arrival probability and percentile travel time for elementary path finding in time-dependent transportation networks: Linear mixed integer programming reformulations," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 68-91.
    10. Chen, Bi Yu & Li, Qingquan & Lam, William H.K., 2016. "Finding the k reliable shortest paths under travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 189-203.
    11. Büchel, Beda & Corman, Francesco, 2022. "Modeling conditional dependencies for bus travel time estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    12. Zhao, Jiansen & Yan, Zhongwei & Chen, Xinqiang & Han, Bing & Wu, Shubo & Ke, Ranxuan, 2022. "k-GCN-LSTM: A k-hop Graph Convolutional Network and Long–Short-Term Memory for ship speed prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    13. Hou, Guangyang & Chen, Suren & Bao, Yulong, 2022. "Development of travel time functions for disrupted urban arterials with microscopic traffic simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    14. Davis, L.C., 2010. "Predicting travel time to limit congestion at a highway bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3588-3599.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shao, Feng & Shao, Hu & Wang, Dongle & Lam, William H.K., 2024. "A multi-task spatio-temporal generative adversarial network for prediction of travel time reliability in peak hour periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shao, Feng & Shao, Hu & Wang, Dongle & Lam, William H.K., 2024. "A multi-task spatio-temporal generative adversarial network for prediction of travel time reliability in peak hour periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    2. Büchel, Beda & Corman, Francesco, 2022. "Modeling conditional dependencies for bus travel time estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    3. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    4. A, Sheeba Angel & R, Jayaparvathy, 2024. "Modeling of emergency evacuation in high rise buildings considering congestion at stairs based on Markov chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    5. Zhang, Kunpeng & Feng, Xiaoliang & Jia, Ning & Zhao, Liang & He, Zhengbing, 2022. "TSR-GAN: Generative Adversarial Networks for Traffic State Reconstruction with Time Space Diagrams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    6. Shen, Liang & Shao, Hu & Wu, Ting & Fainman, Emily Zhu & Lam, William H.K., 2020. "Finding the reliable shortest path with correlated link travel times in signalized traffic networks under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    7. Zhang, Yufeng & Khani, Alireza, 2019. "An algorithm for reliable shortest path problem with travel time correlations," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 92-113.
    8. Zhang, Yuli & Max Shen, Zuo-Jun & Song, Shiji, 2017. "Lagrangian relaxation for the reliable shortest path problem with correlated link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 501-521.
    9. Chen, Bi Yu & Chen, Xiao-Wei & Chen, Hui-Ping & Lam, William H.K., 2020. "Efficient algorithm for finding k shortest paths based on re-optimization technique," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    10. Rajesh S. Prabhu Gaonkar & V. Mariappan, 2020. "Transportation time reliability appraisal in maritime context," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 736-746, June.
    11. Rajesh S. Prabhu Gaonkar & V. Mariappan, 0. "Transportation time reliability appraisal in maritime context," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-11.
    12. Hemant Gehlot & Arif M. Sadri & Satish V. Ukkusuri, 2019. "Joint modeling of evacuation departure and travel times in hurricanes," Transportation, Springer, vol. 46(6), pages 2419-2440, December.
    13. Carrion, Carlos & Levinson, David, 2012. "Value of travel time reliability: A review of current evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 720-741.
    14. Mohammed Abdellaoui & Emmanuel Kemel, 2014. "Eliciting Prospect Theory When Consequences Are Measured in Time Units: “Time Is Not Money”," Management Science, INFORMS, vol. 60(7), pages 1844-1859, July.
    15. Berdica, Katja, 2002. "An introduction to road vulnerability: what has been done, is done and should be done," Transport Policy, Elsevier, vol. 9(2), pages 117-127, April.
    16. Shuai Yu & Bin Li & Dongmei Liu, 2023. "Exploring the Public Health of Travel Behaviors in High-Speed Railway Environment during the COVID-19 Pandemic from the Perspective of Trip Chain: A Case Study of Beijing–Tianjin–Hebei Urban Agglomera," IJERPH, MDPI, vol. 20(2), pages 1-22, January.
    17. Rehborn, Hubert & Klenov, Sergey L. & Palmer, Jochen, 2011. "An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4466-4485.
    18. Soriguera, Francesc, 2014. "On the value of highway travel time information systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 294-310.
    19. Hang Shen & Lin Li & Haihong Zhu & Yu Liu & Zhenwei Luo, 2021. "Exploring a Pricing Model for Urban Rental Houses from a Geographical Perspective," Land, MDPI, vol. 11(1), pages 1-28, December.
    20. Hongcheng Gan & Yang Bai, 2014. "The effect of travel time variability on route choice decision: a generalized linear mixed model based analysis," Transportation, Springer, vol. 41(2), pages 339-350, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:621:y:2023:i:c:s0378437123003242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.