IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v623y2023ics0378437123003989.html
   My bibliography  Save this article

Time-persistent regions discovery of taxi trajectory big datasets based on regional spatio-temporal velocity

Author

Listed:
  • Dokuz, Yesim
  • Dokuz, Ahmet Sakir

Abstract

With the increasing number of residents and motor vehicles in urban areas, traffic-related problems have emerged. Traffic analysis and prediction systems provide information about the city dynamics and traffic estimation on a regional basis. Several studies are performed for traffic analysis and prediction in urban datasets, including taxi trajectory datasets, however, these studies do not focus on regional traffic analysis and time-persistent regions discovery. Time-persistent regions refer to the regions that have a stable utilization and relatively stationary velocity in terms of traffic activities. In this study, a novel method is proposed to discover time-persistent regions based on regional daily velocity values using taxi trajectory big datasets. A new algorithm, namely Time-Persistent Regions Discovery algorithm (TPRD algorithm), is proposed based on the proposed method. The proposed TPRD algorithm is experimentally evaluated on TLC Taxi Trip Records big dataset of New York City and the results show that the proposed algorithm could discover time-persistent regions based on proposed interest measures and threshold values.

Suggested Citation

  • Dokuz, Yesim & Dokuz, Ahmet Sakir, 2023. "Time-persistent regions discovery of taxi trajectory big datasets based on regional spatio-temporal velocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
  • Handle: RePEc:eee:phsmap:v:623:y:2023:i:c:s0378437123003989
    DOI: 10.1016/j.physa.2023.128843
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123003989
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Jie & Xiong, Yong & Liu, Feiyang & Ye, Junqing & Tang, Jinjun, 2022. "Uncovering the spatiotemporal patterns of traffic congestion from large-scale trajectory data: A complex network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Disheng Yi & Yusi Liu & Jiahui Qin & Jing Zhang, 2020. "Identifying Urban Traveling Hotspots Using an Interaction-Based Spatio-Temporal Data Field and Trajectory Data: A Case Study within the Sixth Ring Road of Beijing," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
    3. Dokuz, Ahmet Sakir, 2022. "Weighted spatio-temporal taxi trajectory big data mining for regional traffic estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    4. Shaodong Wang & Yanbin Liu & Wei Zhi & Xihua Wen & Weihua Zhou, 2020. "Discovering Urban Functional Polycentricity: A Traffic Flow-Embedded and Topic Modeling-Based Methodology Framework," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    5. Jiménez, Pilar & Nogal, María & Caulfield, Brian & Pilla, Francesco, 2016. "Perceptually important points of mobility patterns to characterise bike sharing systems: The Dublin case," Journal of Transport Geography, Elsevier, vol. 54(C), pages 228-239.
    6. Zheng, Linjiang & Xia, Dong & Zhao, Xin & Tan, Longyou & Li, Hang & Chen, Li & Liu, Weining, 2018. "Spatial–temporal travel pattern mining using massive taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 24-41.
    7. Dandan Chen & Yong Zhang & Liangpeng Gao & Nana Geng & Xuefeng Li, 2017. "The impact of rainfall on the temporal and spatial distribution of taxi passengers," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dokuz, Ahmet Sakir, 2022. "Weighted spatio-temporal taxi trajectory big data mining for regional traffic estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    2. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.
    3. Tang, Jinjun & Bi, Wei & Liu, Fang & Zhang, Wenhui, 2021. "Exploring urban travel patterns using density-based clustering with multi-attributes from large-scaled vehicle trajectories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    4. Caulfield, Brian & O'Mahony, Margaret & Brazil, William & Weldon, Peter, 2017. "Examining usage patterns of a bike-sharing scheme in a medium sized city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 152-161.
    5. Xia, Dawen & Jiang, Shunying & Yang, Nan & Hu, Yang & Li, Yantao & Li, Huaqing & Wang, Lin, 2021. "Discovering spatiotemporal characteristics of passenger travel with mobile trajectory big data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    6. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    7. Lei Shen & Xi Zhang & Hongda Liu & Pinbo Yao, 2021. "Research on the Economic Development Threshold Effect of the Employment Density of the Shanghai Consumer Goods Industry in the Context of New Manufacturing, Based on the Experience Comparison with Int," Mathematics, MDPI, vol. 9(9), pages 1-19, April.
    8. Muhammad Usama & Yongjun Shen & Onaira Zahoor, 2019. "Towards an Energy Efficient Solution for Bike-Sharing Rebalancing Problems: A Battery Electric Vehicle Scenario," Energies, MDPI, vol. 12(13), pages 1-21, June.
    9. Tong Zhou & Xintao Liu & Zhen Qian & Haoxuan Chen & Fei Tao, 2019. "Dynamic Update and Monitoring of AOI Entrance via Spatiotemporal Clustering of Drop-Off Points," Sustainability, MDPI, vol. 11(23), pages 1-20, December.
    10. Wang, Mingshu & Zhou, Xiaolu, 2017. "Bike-sharing systems and congestion: Evidence from US cities," Journal of Transport Geography, Elsevier, vol. 65(C), pages 147-154.
    11. Stella Kostopoulou & Paraskevi-Kali Sofianou & Konstantinos Tsiokanos, 2021. "Silk Road Heritage Branding and Polycentric Tourism Development," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    12. Qian, Jun-Hao & Zhao, Yi-Xin & Huang, Wei, 2023. "Model improvement and scheduling optimization for multi-vehicle charging planning in IoV," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    13. Patricija Bajec & Danijela Tuljak-Suban & Eva Zalokar, 2021. "A Distance-Based AHP-DEA Super-Efficiency Approach for Selecting an Electric Bike Sharing System Provider: One Step Closer to Sustainability and a Win–Win Effect for All Target Groups," Sustainability, MDPI, vol. 13(2), pages 1-24, January.
    14. Hu, Junjie & Hu, Cheng & Yang, Jiayu & Bai, Jun & Lee, Jaeyoung Jay, 2024. "Do traffic flow states follow Markov properties? A high-order spatiotemporal traffic state reconstruction approach for traffic prediction and imputation," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    15. Fu, Xin & Xu, Chengyao & Liu, Yuteng & Chen, Chi-Hua & Hwang, F.J. & Wang, Jianwei, 2022. "Spatial heterogeneity and migration characteristics of traffic congestion—A quantitative identification method based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    16. Wang, Ruoxuan & Wu, Jianping & Qi, Geqi, 2022. "Exploring regional sustainable commuting patterns based on dockless bike-sharing data and POI data," Journal of Transport Geography, Elsevier, vol. 102(C).
    17. Zeng, Jie & Xiong, Yong & Liu, Feiyang & Ye, Junqing & Tang, Jinjun, 2022. "Uncovering the spatiotemporal patterns of traffic congestion from large-scale trajectory data: A complex network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    18. Maria Nogal & Pilar Jiménez, 2020. "Attractiveness of Bike-Sharing Stations from a Multi-Modal Perspective: The Role of Objective and Subjective Features," Sustainability, MDPI, vol. 12(21), pages 1-26, October.
    19. Bacem Samet & Florent Couffin & Marc Zolghadri & Maher Barkallah & Mohamed Haddar, 2018. "Performance Analysis and Improvement of the Bike Sharing System Using Closed Queuing Networks with Blocking Mechanism," Sustainability, MDPI, vol. 10(12), pages 1-26, December.
    20. Chen, Li & Zheng, Linjiang & Xia, Li & Liu, Weining & Sun, Dihua, 2021. "Detecting and analyzing unlicensed taxis: A case study of Chongqing City," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:623:y:2023:i:c:s0378437123003989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.