IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0235101.html
   My bibliography  Save this article

Anticipation of ventricular tachyarrhythmias by a novel mathematical method: Further insights towards an early warning system in implantable cardioverter defibrillators

Author

Listed:
  • Gabriel S Zamudio
  • Manlio F Márquez
  • Marco V José

Abstract

Implantable cardioverter defibrillators (ICD) are the most effective therapy to terminate malignant ventricular arrhythmias (VA) and therefore to prevent sudden cardiac death. Until today, there is no way to predict the onset of such VA. Our aim was to develop a mathematical model that could predict VA in a timely fashion. We analyzed the time series of R-R intervals from 3 groups. Two groups from the Spontaneous Ventricular Tachyarrhythmia Database (v 1.0) were analyzed from a set of 81 pairs of R-R interval time series records from patients, each pair containing one record before the VT episode (Dataset 1A) and one control record which was obtained during the follow up visit (Dataset 1B). A third data set was composed of the R-R interval time series of 54 subjects without a significant arrhythmia heart disease (Dataset 2). We developed a new method to transform a time series into a network for its analysis, the ε−regular graphs. This novel approach transforms a time series into a network which is sensitive to the quantitative properties of the time series, it has a single parameter (ε) to be adjusted, and it can trace long-range correlations. This procedure allows to use graph theory to extract the dynamics of any time series. The average of the difference between the VT and the control record graph degree of each patient, at each time window, reached a global minimum value of −2.12 followed by a drastic increase of the average graph until reaching a local maximum of 5.59. The global minimum and the following local maxima occur at the windows 276 and 393, respectively. This change in the connectivity of the graphs distinguishes two distinct dynamics occurring during the VA, while the states in between the 276 and 393, determine a transitional state. We propose this change in the dynamic of the R-R intervals as a measurable and detectable “early warning” of the VT event, occurring an average of 514.625 seconds (8:30 minutes) before the onset of the VT episode. It is feasible to detect retrospectively early warnings of the VA episode using their corresponding ε−regular graphs, with an average of 8:30 minutes before the ICD terminates the VA event.

Suggested Citation

  • Gabriel S Zamudio & Manlio F Márquez & Marco V José, 2020. "Anticipation of ventricular tachyarrhythmias by a novel mathematical method: Further insights towards an early warning system in implantable cardioverter defibrillators," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-10, October.
  • Handle: RePEc:plo:pone00:0235101
    DOI: 10.1371/journal.pone.0235101
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235101
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0235101&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0235101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Filippo Simini & Marta C. González & Amos Maritan & Albert-László Barabási, 2012. "A universal model for mobility and migration patterns," Nature, Nature, vol. 484(7392), pages 96-100, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yanguang, 2023. "Demonstration of duality of fractal gravity models by scaling symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    2. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    3. Huang, Feihu & Qiao, Shaojie & Peng, Jian & Guo, Bing & Xiong, Xi & Han, Nan, 2019. "A movement model for air passengers based on trip purpose," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 798-808.
    4. Varga, Levente & Tóth, Géza & Néda, Zoltán, 2017. "An improved radiation model and its applicability for understanding commuting patterns in Hungary," MPRA Paper 76806, University Library of Munich, Germany.
    5. Sgrignoli, Paolo & Metulini, Rodolfo & Schiavo, Stefano & Riccaboni, Massimo, 2015. "The relation between global migration and trade networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 245-260.
    6. James Truscott & Neil M Ferguson, 2012. "Evaluating the Adequacy of Gravity Models as a Description of Human Mobility for Epidemic Modelling," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.
    7. Chen, Yong & Geng, Maosi & Zeng, Jiaqi & Yang, Di & Zhang, Lei & Chen, Xiqun (Michael), 2023. "A novel ensemble model with conditional intervening opportunities for ride-hailing travel mobility estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    8. Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    9. Luo, Xiaohu & Caron, Justin & Karplus, Valerie J. & Zhang, Da & Zhang, Xiliang, 2016. "Interprovincial migration and the stringency of energy policy in China," Energy Economics, Elsevier, vol. 58(C), pages 164-173.
    10. Mark Thissen & Olga Ivanova & Giovanni Mandras & Trond Husby, 2019. "European NUTS 2 regions: construction of interregional trade-linked Supply and Use tables with consistent transport flows," JRC Working Papers on Territorial Modelling and Analysis 2019-01, Joint Research Centre.
    11. Thompson, C.A. & Saxberg, K. & Lega, J. & Tong, D. & Brown, H.E., 2019. "A cumulative gravity model for inter-urban spatial interaction at different scales," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    12. Gonzalo Suarez & Rachata Muneepeerakul, 2022. "Modeling human migration driven by changing mindset, agglomeration, social ties, and the environment," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-11, February.
    13. Rosita De Vincentis & Federico Karagulian & Carlo Liberto & Marialisa Nigro & Vincenza Rosati & Gaetano Valenti, 2022. "A Data-Driven Approach to Analyze Mobility Patterns and the Built Environment: Evidence from Brescia, Catania, and Salerno (Italy)," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
    14. Vinyas Harish & Felipe J. Colón-González & Filipe R. R. Moreira & Rory Gibb & Moritz U. G. Kraemer & Megan Davis & Robert C. Reiner & David M. Pigott & T. Alex Perkins & Daniel J. Weiss & Isaac I. Bog, 2024. "Human movement and environmental barriers shape the emergence of dengue," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    16. Wang, Wenjun & Pan, Lin & Yuan, Ning & Zhang, Sen & Liu, Dong, 2015. "A comparative analysis of intra-city human mobility by taxi," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 134-147.
    17. Aike Steentoft & Bu-Sung Lee & Markus Schläpfer, 2024. "Quantifying the uncertainty of mobility flow predictions using Gaussian processes," Transportation, Springer, vol. 51(6), pages 2301-2322, December.
    18. S. Bacci & B. Bertaccini, 2021. "Assessment of the University Reputation Through the Analysis of the Student Mobility," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 363-388, August.
    19. Li, Cong & Zhang, Shumin & Li, Xiang, 2019. "Can multiple social ties help improve human location prediction?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1276-1288.
    20. Alejandro Llorente & Manuel Garcia-Herranz & Manuel Cebrian & Esteban Moro, 2015. "Social Media Fingerprints of Unemployment," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-13, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0235101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.