IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v617y2023ics0378437123002182.html
   My bibliography  Save this article

Neural dynamic transitions caused by changes of synaptic strength in heterogeneous networks

Author

Listed:
  • Xu, Bang-Lin
  • Zhou, Jian-Fang
  • Li, Rui
  • Jiang, En-Hua
  • Yuan, Wu-Jie

Abstract

Sleep-dependent memory consolidation (SDMC) is an unaddressed and challenging functional issue regarding neural dynamics. Based on experimental findings, the synaptic homeostasis hypothesis for understanding SDMC implies a link between changes of synaptic strength and transitions of neural dynamics (including tonic and bursting activities). However, the causality of the link has been unclear. Recently, it has been found that, the synaptic changes can cause the dynamical transitions and so can produce the slow-wave activity (SWA) similar to that observed during sleep in a homogeneous network (Zhou et al., 2021). Since many real neural networks are heterogeneous in topology, we herein further investigated the transitions and the SWA driven by the synaptic changes in heterogeneous networks. It was found that synaptic changes can also cause the dynamical transitions and the SWA. Differently, the transitions in heterogeneous networks are hierarchical for neurons with different degrees, whether in electrically or chemically coupled networks. The critical synaptic strengths related to the transitions for neurons depend strongly on their degrees. The larger the degree, the smaller the critical synaptic strength. We showed that, they obey power-law relations, both in electrically coupled networks and in chemically coupled networks in the presence of inhibitory synapses. Particularly, it was found that the networked critical synaptic strength depends only on the networked maximum degree in electrically coupled networks. We showed, both numerically and analytically, that they also satisfy a power-law function. In general, our study revealed a possible causal relationship between changes of synaptic strength and transitions of neural dynamics in heterogeneous networks. Further interesting and challenging investigations are briefly discussed as well.

Suggested Citation

  • Xu, Bang-Lin & Zhou, Jian-Fang & Li, Rui & Jiang, En-Hua & Yuan, Wu-Jie, 2023. "Neural dynamic transitions caused by changes of synaptic strength in heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
  • Handle: RePEc:eee:phsmap:v:617:y:2023:i:c:s0378437123002182
    DOI: 10.1016/j.physa.2023.128663
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123002182
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128663?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    2. Vladyslav V. Vyazovskiy & Umberto Olcese & Erin C. Hanlon & Yuval Nir & Chiara Cirelli & Giulio Tononi, 2011. "Local sleep in awake rats," Nature, Nature, vol. 472(7344), pages 443-447, April.
    3. Klinshov, Vladimir V. & Kovalchuk, Andrey V. & Franović, Igor & Perc, Matjaž & Svetec, Milan, 2022. "Rate chaos and memory lifetime in spiking neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Rui & Xu, Bang-Lin & Chen, De-Bao & Zhou, Jian-Fang & Yuan, Wu-Jie, 2023. "Transitions to synchronization induced by synaptic increasing in coupled tonic neurons with electrical synapses," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Wei & Shi, Yuming & Huang, Qiuling, 2014. "Modeling the Chinese language as an evolving network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 268-276.
    2. Yan Qiang & Bo Pei & Weili Wu & Juanjuan Zhao & Xiaolong Zhang & Yue Li & Lidong Wu, 2014. "Improvement of path analysis algorithm in social networks based on HBase," Journal of Combinatorial Optimization, Springer, vol. 28(3), pages 588-599, October.
    3. Lukas L Imbach & Esther Werth & Ulf Kallweit & Johannes Sarnthein & Thomas E Scammell & Christian R Baumann, 2012. "Inter-Hemispheric Oscillations in Human Sleep," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-10, November.
    4. Stephanie Rend'on de la Torre & Jaan Kalda & Robert Kitt & Juri Engelbrecht, 2016. "On the topologic structure of economic complex networks: Empirical evidence from large scale payment network of Estonia," Papers 1602.04352, arXiv.org.
    5. Gabrielle Demange, 2012. "On the influence of a ranking system," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(2), pages 431-455, July.
    6. Tsao, J.Y. & Boyack, K.W. & Coltrin, M.E. & Turnley, J.G. & Gauster, W.B., 2008. "Galileo's stream: A framework for understanding knowledge production," Research Policy, Elsevier, vol. 37(2), pages 330-352, March.
    7. Pier Paolo Saviotti, 2011. "Knowledge, Complexity and Networks," Chapters, in: Cristiano Antonelli (ed.), Handbook on the Economic Complexity of Technological Change, chapter 6, Edward Elgar Publishing.
    8. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    9. Chung-Yuan Huang & Chuen-Tsai Sun & Hsun-Cheng Lin, 2005. "Influence of Local Information on Social Simulations in Small-World Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-8.
    10. Sun, Bingbin & Yao, Jialing & Xi, Lifeng, 2019. "Eigentime identities of fractal sailboat networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 338-349.
    11. Yang, Xu-Hua & Lou, Shun-Li & Chen, Guang & Chen, Sheng-Yong & Huang, Wei, 2013. "Scale-free networks via attaching to random neighbors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3531-3536.
    12. Colizza, Vittoria & Flammini, Alessandro & Maritan, Amos & Vespignani, Alessandro, 2005. "Characterization and modeling of protein–protein interaction networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(1), pages 1-27.
    13. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    14. Haider, Sajjad & Mariotti, Francesca, 2016. "The orchestration of alliance portfolios: The role of alliance portfolio capability," Scandinavian Journal of Management, Elsevier, vol. 32(3), pages 127-141.
    15. Lotfi, Nastaran & Rodrigues, Francisco A., 2022. "On the effect of memory on the Prisoner’s Dilemma game in correlated networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    16. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    17. L. Jarina Banu & P. Balasubramaniam, 2014. "Synchronisation of discrete-time complex networks with randomly occurring uncertainties, nonlinearities and time-delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(7), pages 1427-1450, July.
    18. Chen, Qinghua & Shi, Dinghua, 2004. "The modeling of scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 240-248.
    19. Csárdi, Gábor & Strandburg, Katherine J. & Zalányi, László & Tobochnik, Jan & Érdi, Péter, 2007. "Modeling innovation by a kinetic description of the patent citation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 783-793.
    20. Wang, Yi & Cao, Jinde & Jin, Zhen & Zhang, Haifeng & Sun, Gui-Quan, 2013. "Impact of media coverage on epidemic spreading in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5824-5835.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:617:y:2023:i:c:s0378437123002182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.