IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v607y2022ics0378437122007737.html
   My bibliography  Save this article

Effect of coupling structure on traffic-driven epidemic spreading in interconnected networks

Author

Listed:
  • Chen, Jie
  • Tan, Xuegang
  • Cao, Jinde
  • Li, Ming

Abstract

Interconnected networks, as the good abstraction of many real complex systems, have recently attracted a lot of attentions. In this paper, we propose a traffic-driven epidemic model in interconnected networks to show the effects of interplay induced by the coupled structure. Through simulations on interconnected scale-free networks, we find that in the free flow state, the disassortative coupling can effectively suppress the spreading of epidemics by introducing a more uniform distribution of traffic load, especially for high coupling strength. This result has also been confirmed by our mean-field solution. When the system is congested, the results show that the epidemic threshold is subject to the critical point of the traffic process, which depends on the coupling mode, traffic routing and allocation mechanism of node capacity. We also check our model under different routing protocols, the results show that our findings are robust, indicating that the coupling structure is the determining factor of the dynamics on interconnected networks.

Suggested Citation

  • Chen, Jie & Tan, Xuegang & Cao, Jinde & Li, Ming, 2022. "Effect of coupling structure on traffic-driven epidemic spreading in interconnected networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
  • Handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007737
    DOI: 10.1016/j.physa.2022.128215
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122007737
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Ming & Liu, Run-Ran & Peng, Dan & Jia, Chun-Xiao & Wang, Bing-Hong, 2018. "Roles of the spreading scope and effectiveness in spreading dynamics on multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1239-1246.
    2. Watanabe, Hiromu & Hasegawa, Takehisa, 2022. "Impact of assortative mixing by mask-wearing on the propagation of epidemics in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    3. Badham, Jennifer & Stocker, Rob, 2010. "The impact of network clustering and assortativity on epidemic behaviour," Theoretical Population Biology, Elsevier, vol. 77(1), pages 71-75.
    4. Pu, Cunlai & Li, Siyuan & Yang, XianXia & Xu, Zhongqi & Ji, Zexuan & Yang, Jian, 2016. "Traffic-driven SIR epidemic spreading in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 129-137.
    5. Chen, Jie & Hu, Mao-Bin & Li, Ming, 2020. "Traffic-driven epidemic spreading dynamics with heterogeneous infection rates," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    6. Chang, Sheryl L. & Piraveenan, Mahendra & Prokopenko, Mikhail, 2020. "Impact of network assortativity on epidemic and vaccination behaviour," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Kai Gong & Ming Tang & Pak Ming Hui & Hai Feng Zhang & Do Younghae & Ying-Cheng Lai, 2013. "An Efficient Immunization Strategy for Community Networks," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-11, December.
    8. Bamaarouf, O. & Alweimine, A. Ould Baba & Rachadi, A. & EZ-Zahraouy, H., 2018. "Selective epidemic vaccination under the performant routing algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 209-219.
    9. Yang, Han-Xin & Wang, Zhen, 2016. "Suppressing traffic-driven epidemic spreading by adaptive routing strategy," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 147-150.
    10. Chen, Jie & Wu, Chao-Yun & Li, Ming & Hu, Mao-Bin, 2019. "Hybrid traffic dynamics on coupled networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 98-104.
    11. Wang, Huan & Ma, Chuang & Chen, Han-Shuang & Zhang, Hai-Feng, 2021. "Effects of asymptomatic infection and self-initiated awareness on the coupled disease-awareness dynamics in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    12. Yang, Han-Xin & Wang, Bing-Hong, 2016. "Immunization of traffic-driven epidemic spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 86-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yang & Wu, Jialu & Xiao, Yunjiang & Hu, Hangqi & Wang, Wei & Chen, Jun, 2024. "Resilience analysis of highway network under rainfall using a data-driven percolation theory-based method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jun-Jie & Hu, Mao-Bin & Wu, Yong-Hong, 2022. "Traffic-driven epidemic spreading with non-uniform origin and destination selection," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Chen, Jie & Hu, Mao-Bin & Li, Ming, 2020. "Traffic-driven epidemic spreading dynamics with heterogeneous infection rates," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    3. Deepti Muley & Md. Shahin & Charitha Dias & Muhammad Abdullah, 2020. "Role of Transport during Outbreak of Infectious Diseases: Evidence from the Past," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    4. Chen, Xiao-Long & Wang, Rui-Jie & Yang, Chun & Cai, Shi-Min, 2019. "Hybrid resource allocation and its impact on the dynamics of disease spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 156-165.
    5. Su, Zhu & Liu, Sannyuya & Deng, Weibing & Li, Wei & Cai, Xu, 2019. "Transportation dynamics on networks of heterogeneous mobile agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1379-1386.
    6. Jeong, Wonhee & Yu, Unjong, 2022. "Effects of quadrilateral clustering on complex contagion," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    7. Nian, Fuzhong & Hu, Chasheng & Yao, Shuanglong & Wang, Longjing & Wang, Xingyuan, 2018. "An immunization based on node activity," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 228-233.
    8. Juang, Jonq & Liang, Yu-Hao, 2024. "Epidemic models in well-mixed multiplex networks with distributed time delay," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    9. Gong Kai & Kang Li, 2018. "A New K-Shell Decomposition Method for Identifying Influential Spreaders of Epidemics on Community Networks," Journal of Systems Science and Information, De Gruyter, vol. 6(4), pages 366-375, August.
    10. Li, Xun & Cao, Lang, 2016. "Diffusion processes of fragmentary information on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 624-634.
    11. Meihui Jiang, 2022. "Locating the Principal Sectors for Carbon Emission Reduction on the Global Supply Chains by the Methods of Complex Network and Susceptible–Infective Model," Sustainability, MDPI, vol. 14(5), pages 1-13, February.
    12. Tao, Li & Kong, Shengzhou & He, Langzhou & Zhang, Fan & Li, Xianghua & Jia, Tao & Han, Zhen, 2022. "A sequential-path tree-based centrality for identifying influential spreaders in temporal networks," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    13. Samuel F Rosenblatt & Jeffrey A Smith & G Robin Gauthier & Laurent Hébert-Dufresne, 2020. "Immunization strategies in networks with missing data," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-21, July.
    14. Ma, Jinlong & Wang, Peng, 2024. "Impact of community networks with higher-order interaction on epidemic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    15. Bouyer, Asgarali & Beni, Hamid Ahmadi, 2022. "Influence maximization problem by leveraging the local traveling and node labeling method for discovering most influential nodes in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    16. Zhang, Rongping & Liu, Maoxing & Xie, Boli, 2022. "The analysis of discrete-time epidemic model on networks with protective measures on game theory," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    17. Huang, He & Yan, Zhijun & Pan, Yaohui, 2014. "Measuring edge importance to improve immunization performance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 532-540.
    18. Wang, Runzhou & Zhang, Xinsheng & Wang, Minghu, 2024. "A two-layer model with partial mapping: Unveiling the interplay between information dissemination and disease diffusion," Applied Mathematics and Computation, Elsevier, vol. 468(C).
    19. Meng, Xueyu & Lin, Jianhong & Fan, Yufei & Gao, Fujuan & Fenoaltea, Enrico Maria & Cai, Zhiqiang & Si, Shubin, 2023. "Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    20. Hu, Sen & Hu, Bin & Cao, Ya, 2018. "The wider, the better? The interaction between the IoT diffusion and online retailers’ decisions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 196-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.