IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v516y2019icp98-104.html
   My bibliography  Save this article

Hybrid traffic dynamics on coupled networks

Author

Listed:
  • Chen, Jie
  • Wu, Chao-Yun
  • Li, Ming
  • Hu, Mao-Bin

Abstract

Recent researches indicate that real network systems are often coupled together by shared links or interconnecting nodes, through which different networks can communicate with each other. Therefore, both intra-traffic and inter-traffic coexist in these systems. In this paper, we study such kind of hybrid traffic flow considering three coupling mechanisms: (i) assortative coupling, (ii) disassortative coupling, and (ii) the newly proposed anti-assortative coupling. The results show that the anti-assortative coupling can achieve higher traffic capacity, especially when the inter-traffic level is high. The traffic capacity of system exhibits non-monotonic behavior with the coupling strength. With the anti-assortative coupling mechanism, the system capacity can be improved at an optimized coupling strength of β≈0.3. We further propose an index called effective betweenness, based on which the traffic capacity of such coupled systems can be theoretically predicted.

Suggested Citation

  • Chen, Jie & Wu, Chao-Yun & Li, Ming & Hu, Mao-Bin, 2019. "Hybrid traffic dynamics on coupled networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 98-104.
  • Handle: RePEc:eee:phsmap:v:516:y:2019:i:c:p:98-104
    DOI: 10.1016/j.physa.2018.10.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118313542
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.10.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Lin & Du, Wenbo & Ying, Wen & Cai, Kaiquan & Wang, Zhen & Cao, Xianbin, 2018. "Optimal resource allocation in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 104-110.
    2. Du, Wen-Bo & Wu, Zhi-Xi & Cai, Kai-Quan, 2013. "Effective usage of shortest paths promotes transportation efficiency on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3505-3512.
    3. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    4. Tan, Fei & Xia, Yongxiang, 2013. "Hybrid routing on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4146-4153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jie & Cao, Jinde & Huang, Wei, 2023. "Traffic-driven explosive synchronization with adaptive local routing in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Chen, Jie & Tan, Xuegang & Cao, Jinde & Li, Ming, 2022. "Effect of coupling structure on traffic-driven epidemic spreading in interconnected networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Guanping & Zheng, Zheng & Wang, Haoqin, 2017. "Evolution of Linux operating system network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 249-258.
    2. Xia, Yongxiang & Zhang, Wenping & Zhang, Xuejun, 2016. "The effect of capacity redundancy disparity on the robustness of interconnected networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 561-568.
    3. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & He, Zhichao, 2024. "A network-based approach to improving robustness of a high-speed train by structure adjustment," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Wang, Xin-Wei & Chen, Zhen & Han, Chao, 2016. "Scheduling for single agile satellite, redundant targets problem using complex networks theory," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 125-132.
    5. Tu, Haicheng & Xia, Yongxiang & Wu, Jiajing & Zhou, Xiang, 2019. "Robustness assessment of cyber–physical systems with weak interdependency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 9-17.
    6. Zhang, Wenping & Xia, Yongxiang & Ouyang, Bo & Jiang, Lurong, 2015. "Effect of network size on robustness of interconnected networks under targeted attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 435(C), pages 80-88.
    7. Xi Zhang & Zhili Zhou & Dong Cheng, 2017. "Efficient path routing strategy for flows with multiple priorities on scale-free networks," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-16, February.
    8. Wang, Haoqin & Chen, Zhen & Xiao, Guanping & Zheng, Zheng, 2016. "Network of networks in Linux operating system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 520-526.
    9. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    10. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Robustness of assembly supply chain networks by considering risk propagation and cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 129-139.
    11. Shogo Mizutaka & Kousuke Yakubo, 2017. "Structural instability of large-scale functional networks," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-11, July.
    12. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    13. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    14. Hernandez-Fajardo, Isaac & Dueñas-Osorio, Leonardo, 2013. "Probabilistic study of cascading failures in complex interdependent lifeline systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 260-272.
    15. Yu, Haitao & Wang, Jiang & Liu, Chen & Deng, Bin & Wei, Xile, 2014. "Delay-induced synchronization transitions in modular scale-free neuronal networks with hybrid electrical and chemical synapses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 25-34.
    16. Sgrignoli, Paolo & Metulini, Rodolfo & Schiavo, Stefano & Riccaboni, Massimo, 2015. "The relation between global migration and trade networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 245-260.
    17. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    18. Monsalve, Mauricio & de la Llera, Juan Carlos, 2019. "Data-driven estimation of interdependencies and restoration of infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 167-180.
    19. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    20. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan, 2023. "Higher-order interdependent percolation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:516:y:2019:i:c:p:98-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.