IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v215y2021ics0951832021003112.html
   My bibliography  Save this article

Identification of interdependencies and prediction of fault propagation for cyber–physical systems

Author

Listed:
  • Marashi, Koosha
  • Sarvestani, Sahra Sedigh
  • Hurson, Ali R.

Abstract

Interdependence is an intrinsic feature of cyber–physical systems. Cyber and physical components are tightly integrated with each other, and hence, a trivial impairment in a part of the system may affect several components, leading to a sequence of failures that collapses the entire system. In this paper, we seek to identify the interdependencies among the components of a cyber–physical system using correlation metrics as well as a heuristic causation analysis method. We also demonstrate applicability of neural networks for prediction of imminent failures given the current system state. The proposed prediction tool can help system operators to perform timely preventive actions and mitigate the consequences of accidental failures and malicious attacks. As a case study, we have analyzed two smart grid test cases based on IEEE power bus systems, namely, IEEE-14 and IEEE-57.

Suggested Citation

  • Marashi, Koosha & Sarvestani, Sahra Sedigh & Hurson, Ali R., 2021. "Identification of interdependencies and prediction of fault propagation for cyber–physical systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021003112
    DOI: 10.1016/j.ress.2021.107787
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021003112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107787?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Trivik Verma & Wendy Ellens & Robert E. Kooij, 2015. "Context-independent centrality measures underestimate the vulnerability of power grids," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 11(1), pages 62-81.
    2. Zhou, Jian & Huang, Ning & Coit, David W. & Felder, Frank A., 2018. "Combined effects of load dynamics and dependence clusters on cascading failures in network systems," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 116-126.
    3. Beccuti, Marco & Chiaradonna, Silvano & Di Giandomenico, Felicita & Donatelli, Susanna & Dondossola, Giovanna & Franceschinis, Giuliana, 2012. "Quantification of dependencies between electrical and information infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 5(1), pages 14-27.
    4. Woodard, Mark & Marashi, Koosha & Sedigh Sarvestani, Sahra & Hurson, Ali R., 2021. "Survivability evaluation and importance analysis for cyber–physical smart grids," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & He, Zhichao, 2023. "A multi-objective optimization model for identifying groups of critical elements in a high-speed train," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. David Carrascal & Paula Bartolomé & Elisa Rojas & Diego Lopez-Pajares & Nicolas Manso & Javier Diaz-Fuentes, 2024. "Fault Prediction and Reconfiguration Optimization in Smart Grids: AI-Driven Approach," Future Internet, MDPI, vol. 16(11), pages 1-26, November.
    3. Ding, Xiao & Wang, Huan & Zhang, Xi & Ma, Chuang & Zhang, Hai-Feng, 2024. "Dual nature of cyber–physical power systems and the mitigation strategies," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Wang, Hongping & Fang, Yi-Ping & Zio, Enrico, 2022. "Resilience-oriented optimal post-disruption reconfiguration for coupled traffic-power systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Gjorgiev, Blazhe & Das, Laya & Merkel, Seline & Rohrer, Martina & Auger, Etienne & Sansavini, Giovanni, 2023. "Simulation-driven deep learning for locating faulty insulators in a power line," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    6. Wang, Wei & Cova, Gregorio & Zio, Enrico, 2022. "A clustering-based framework for searching vulnerabilities in the operation dynamics of Cyber-Physical Energy Systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Abbasizadeh, Ali & Azad-Farsani, Ehsan, 2024. "Cyber-constrained load shedding for smart grid resilience enhancement," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    8. Li, Ruimeng & Yang, Naiding & Yi, Hao & Jin, Na, 2023. "The robustness of complex product development projects under design change risk propagation with gray attack information," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei & Cova, Gregorio & Zio, Enrico, 2022. "A clustering-based framework for searching vulnerabilities in the operation dynamics of Cyber-Physical Energy Systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Qianxiang Zhu & Yuanqing Qin & Yue Zhao & Zhou Chunjie, 2020. "A hierarchical colored Petri net–based cyberattacks response strategy making approach for critical infrastructures," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477198, January.
    3. Wang, Hongping & Fang, Yi-Ping & Zio, Enrico, 2022. "Resilience-oriented optimal post-disruption reconfiguration for coupled traffic-power systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    5. Singh, Abhishek Narain & Gupta, M.P. & Ojha, Amitabh, 2014. "Identifying critical infrastructure sectors and their dependencies: An Indian scenario," International Journal of Critical Infrastructure Protection, Elsevier, vol. 7(2), pages 71-85.
    6. Abbasizadeh, Ali & Azad-Farsani, Ehsan, 2024. "Cyber-constrained load shedding for smart grid resilience enhancement," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Zhang, Xi & Liu, Dong & Tu, Haicheng & Tse, Chi Kong, 2022. "An integrated modeling framework for cascading failure study and robustness assessment of cyber-coupled power grids," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    8. Dui, Hongyan & Chen, Shuanshuan & Wang, Jia, 2021. "Failure-oriented maintenance analysis of nodes and edges in network systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Kenneth Martínez & David Claudio, 2023. "Expanding Fundamental Boundaries between Resilience and Survivability in Systems Engineering: A Literature Review," Sustainability, MDPI, vol. 15(6), pages 1-27, March.
    10. Zhang, Jianhua & Wang, Ziqi & Wang, Shuliang & Shao, Wenchao & Zhao, Xun & Liu, Weizhi, 2021. "Vulnerability assessments of weighted urban rail transit networks with integrated coupled map lattices," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    11. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    12. Sun, Lina & Huang, Ning & Li, Ruiying & Bai, Yanan, 2019. "A new fractal reliability model for networks with node fractal growth and no-loop," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 699-707.
    13. Hassan Al-Zarooni & Hamdi Bashir, 2020. "An integrated ISM fuzzy MICMAC approach for modeling and analyzing electrical power system network interdependencies," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(6), pages 1204-1226, December.
    14. Zhou, Jian & Tsianikas, Stamatis & Birnie, Dunbar P. & Coit, David W., 2019. "Economic and resilience benefit analysis of incorporating battery storage to photovoltaic array generation," Renewable Energy, Elsevier, vol. 135(C), pages 652-662.
    15. Wang, Ziqi & Pei, Yulong & Zhang, Jianhua & Dong, Chuntong & Liu, Jing & Zhou, Dongyue, 2024. "Vulnerability analysis of public transit systems from the perspective of the traffic situation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    16. Sindy Martínez-Marín & Nataly Puello-Pereira & David Ovallos-Gazabon, 2020. "Cluster Competitiveness Modeling: An Approach with Systems Dynamics," Social Sciences, MDPI, vol. 9(2), pages 1-18, February.
    17. Tsianikas, Stamatis & Yousefi, Nooshin & Zhou, Jian & Rodgers, Mark D. & Coit, David, 2021. "A storage expansion planning framework using reinforcement learning and simulation-based optimization," Applied Energy, Elsevier, vol. 290(C).
    18. Lam, C.Y. & Tai, K., 2020. "Network topological approach to modeling accident causations and characteristics: Analysis of railway incidents in Japan," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    19. Nan, Cen & Sansavini, Giovanni, 2015. "Multilayer hybrid modeling framework for the performance assessment of interdependent critical infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 10(C), pages 18-33.
    20. Zhou, Lin & Qi, Xiaogang & Liu, Lifang, 2023. "Robustness of networks with dependency groups considering fluctuating loads and recovery behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021003112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.