IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v600y2022ics037843712200396x.html
   My bibliography  Save this article

A restricted epidemic SIR model with elementary solutions

Author

Listed:
  • Turkyilmazoglu, Mustafa

Abstract

The mathematical epidemic SIR (Susceptible–Infected–Recovered) model is targeted to obtain full elementary solutions under restrictive assumptions in this paper. To achieve the aim, the traditional SIR model is modified in such a manner that the interaction between the susceptible and infected leading to new infected person takes place proportional to the susceptible square root and infected compartments, in place of the product of susceptible and infected class as in the classical model. First, equilibrium points of the new model are identified and their stability analysis is examined. Such a variant of the SIR model enables us to define a basic reproduction number in terms of the ratio of squares of infection and recovery rates. Elementary solutions of the model are next formed based on the simple hyperbolic functions. Solutions of this form are shown to be valid for a confined interval of basic reproduction number. Graphical illustrations are finally given for some selected epidemic parameters. The present analytical solutions can be used to test the accuracy of a number of numerical simulation methods being developed for various other SIR models recently being investigated.

Suggested Citation

  • Turkyilmazoglu, Mustafa, 2022. "A restricted epidemic SIR model with elementary solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
  • Handle: RePEc:eee:phsmap:v:600:y:2022:i:c:s037843712200396x
    DOI: 10.1016/j.physa.2022.127570
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712200396X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127570?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Wei & Xu, Wei & Song, Yi & Liu, Jiankang, 2021. "Bifurcation and basin stability of an SIR epidemic model with limited medical resources and switching noise," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Jena, Rajarama Mohan & Chakraverty, Snehashish & Baleanu, Dumitru, 2021. "SIR epidemic model of childhood diseases through fractional operators with Mittag-Leffler and exponential kernels," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 514-534.
    3. Jang, Junyoung & Kwon, Hee-Dae & Lee, Jeehyun, 2020. "Optimal control problem of an SIR reaction–diffusion model with inequality constraints," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 136-151.
    4. Liu, Liya & Jiang, Daqing & Hayat, Tasawar, 2021. "Dynamics of an SIR epidemic model with varying population sizes and regime switching in a two patch setting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    5. Ali, Ishtiaq & Ullah Khan, Sami, 2020. "Analysis of stochastic delayed SIRS model with exponential birth and saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jang, Gyeong Hwan & Kim, Sung Jin & Lee, Mi Jin & Son, Seung-Woo, 2024. "Effectiveness of vaccination and quarantine policies to curb the spread of COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    2. Saha, Sangeeta & Dutta, Protyusha & Samanta, Guruprasad, 2022. "Dynamical behavior of SIRS model incorporating government action and public response in presence of deterministic and fluctuating environments," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Kaniadakis, G., 2024. "Novel class of susceptible–infectious–recovered models involving power-law interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turkyilmazoglu, Mustafa, 2022. "An extended epidemic model with vaccination: Weak-immune SIRVI," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    2. Naz, Sidra & Raja, Muhammad Asif Zahoor & Kausar, Aneela & Zameer, Aneela & Mehmood, Ammara & Shoaib, Muhammad, 2022. "Dynamics of nonlinear cantilever piezoelectric–mechanical system: An intelligent computational approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 88-113.
    3. Pasha, Syed Ahmed & Nawaz, Yasir & Arif, Muhammad Shoaib, 2023. "On the nonstandard finite difference method for reaction–diffusion models," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    4. Aníbal Coronel & Fernando Huancas & Esperanza Lozada & Marko Rojas-Medar, 2021. "The Dubovitskii and Milyutin Methodology Applied to an Optimal Control Problem Originating in an Ecological System," Mathematics, MDPI, vol. 9(5), pages 1-17, February.
    5. Gabrick, Enrique C. & Sayari, Elaheh & Protachevicz, Paulo R. & Szezech, José D. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Viana, Ricardo L. & Caldas, Iberê L. & Batista, , 2023. "Unpredictability in seasonal infectious diseases spread," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    6. Masoud Saade & Sebastian Aniţa & Vitaly Volpert, 2023. "Dynamics of Persistent Epidemic and Optimal Control of Vaccination," Mathematics, MDPI, vol. 11(17), pages 1-15, September.
    7. Chakir, Yassine, 2023. "Global approximate solution of SIR epidemic model with constant vaccination strategy," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    8. Barraza, Néstor Ruben & Pena, Gabriel & Moreno, Verónica, 2020. "A non-homogeneous Markov early epidemic growth dynamics model. Application to the SARS-CoV-2 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Ishtiaq Ali & Sami Ullah Khan, 2022. "Asymptotic Behavior of Three Connected Stochastic Delay Neoclassical Growth Systems Using Spectral Technique," Mathematics, MDPI, vol. 10(19), pages 1-15, October.
    10. Meng, Xueyu & Lin, Jianhong & Fan, Yufei & Gao, Fujuan & Fenoaltea, Enrico Maria & Cai, Zhiqiang & Si, Shubin, 2023. "Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    11. Liu, Chao & Tian, Yilin & Chen, Peng & Cheung, Lora, 2024. "Stochastic dynamic effects of media coverage and incubation on a distributed delayed epidemic system with Lévy jumps," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    12. Parsamanesh, Mahmood & Erfanian, Majid, 2021. "Stability and bifurcations in a discrete-time SIVS model with saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    13. Ishtiaq Ali & Sami Ullah Khan, 2023. "A Dynamic Competition Analysis of Stochastic Fractional Differential Equation Arising in Finance via Pseudospectral Method," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
    14. Han, Lili & Song, Sha & Pan, Qiuhui & He, Mingfeng, 2023. "The impact of multiple population-wide testing and social distancing on the transmission of an infectious disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    15. Song, Yi & Xu, Wei & Wei, Wei & Niu, Lizhi, 2023. "Dynamical transition of phenotypic states in breast cancer system with Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    16. Vivekanandhan, Gayathri & Nourian Zavareh, Mahdi & Natiq, Hayder & Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Svetec, Milan, 2022. "Investigation of vaccination game approach in spreading covid-19 epidemic model with considering the birth and death rates," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    17. Gao, Yin & Jia, Lifen, 2021. "Stability in mean for uncertain delay differential equations based on new Lipschitz conditions," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    18. Zheng, Qianqian & Shen, Jianwei & Pandey, Vikas & Guan, Linan & Guo, Yantao, 2023. "Turing instability in a network-organized epidemic model with delay," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    19. Pan, QiuHui & Song, Sha & He, MingFeng, 2021. "The effect of quarantine measures for close contacts on the transmission of emerging infectious diseases with infectivity in incubation period," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    20. Azhar Iqbal Kashif Butt & Saira Batool & Muhammad Imran & Muneerah Al Nuwairan, 2023. "Design and Analysis of a New COVID-19 Model with Comparative Study of Control Strategies," Mathematics, MDPI, vol. 11(9), pages 1-29, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:600:y:2022:i:c:s037843712200396x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.