IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v590y2022ics037843712100933x.html
   My bibliography  Save this article

Discerning media bias within a network of political allies and opponents: The idealized example of a biased coin

Author

Listed:
  • Low, Nicholas Kah Yean
  • Melatos, Andrew

Abstract

Perceptions of political bias in the media are formed directly, through the independent consumption of the published outputs of a media organization, and indirectly, through observing the collective responses of political allies and opponents to the same published outputs. A network of Bayesian learners is constructed to model this system, in which the bias perceived by each agent obeys a probability density function, which is updated according to Bayes’s theorem given data about the published outputs and the beliefs of the agent’s political allies and opponents. The Bayesian framework allows for uncertain beliefs, multimodal probability distribution functions, and antagonistic interactions with opponents, not just cooperation with allies. Numerical simulations are performed to test the idealized example of inferring the bias of a coin. It is found that some agents converge on the wrong conclusion faster than others converge on the right conclusion under a surprisingly broad range of conditions, when antagonistic interactions are present which “lock out” some agents from the truth, e.g. in Barabási–Albert networks. It is also found that structurally unbalanced networks routinely experience turbulent nonconvergence, where some agents fail to achieve a steady-state belief, e.g. when they are allies of two agents who are opponents themselves. The subtle phenomenon of long-term intermittency is also explored.

Suggested Citation

  • Low, Nicholas Kah Yean & Melatos, Andrew, 2022. "Discerning media bias within a network of political allies and opponents: The idealized example of a biased coin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
  • Handle: RePEc:eee:phsmap:v:590:y:2022:i:c:s037843712100933x
    DOI: 10.1016/j.physa.2021.126722
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712100933X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126722?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Aili & Wang, Lin & Wei, Xinjiang, 2019. "Social learning with multiple true states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 375-386.
    2. Haoxiang Xia & Huili Wang & Zhaoguo Xuan, 2011. "Opinion Dynamics: A Multidisciplinary Review and Perspective on Future Research," International Journal of Knowledge and Systems Science (IJKSS), IGI Global, vol. 2(4), pages 72-91, October.
    3. Jadbabaie, Ali & Molavi, Pooya & Sandroni, Alvaro & Tahbaz-Salehi, Alireza, 2012. "Non-Bayesian social learning," Games and Economic Behavior, Elsevier, vol. 76(1), pages 210-225.
    4. Aili Fang & Kehua Yuan & Jinhua Geng & Xinjiang Wei, 2020. "Opinion Dynamics with Bayesian Learning," Complexity, Hindawi, vol. 2020, pages 1-5, February.
    5. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    6. Walter Quattrociocchi & Rosaria Conte & Elena Lodi, 2011. "Opinions Manipulation: Media, Power And Gossip," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 14(04), pages 567-586.
    7. Pineda, M. & Buendía, G.M., 2015. "Mass media and heterogeneous bounds of confidence in continuous opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 73-84.
    8. Guillaume Deffuant & David Neau & Frederic Amblard & Gérard Weisbuch, 2000. "Mixing beliefs among interacting agents," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 3(01n04), pages 87-98.
    9. Druckman, James N. & Fein, Jordan & Leeper, Thomas J., 2012. "A Source of Bias in Public Opinion Stability," American Political Science Review, Cambridge University Press, vol. 106(2), pages 430-454, May.
    10. Guodong Shi & Alexandre Proutiere & Mikael Johansson & John S. Baras & Karl H. Johansson, 2016. "The Evolution of Beliefs over Signed Social Networks," Operations Research, INFORMS, vol. 64(3), pages 585-604, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Low, Nicholas Kah Yean & Melatos, Andrew, 2022. "Vacillating about media bias: Changing one’s mind intermittently within a network of political allies and opponents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Low, Nicholas Kah Yean & Melatos, Andrew, 2022. "Vacillating about media bias: Changing one’s mind intermittently within a network of political allies and opponents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Fang, Aili, 2021. "The influence of communication structure on opinion dynamics in social networks with multiple true states," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    3. Catherine A. Glass & David H. Glass, 2021. "Social Influence of Competing Groups and Leaders in Opinion Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 799-823, October.
    4. Glass, Catherine A. & Glass, David H., 2021. "Opinion dynamics of social learning with a conflicting source," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    5. Huang, Changwei & Hou, Yongzhao & Han, Wenchen, 2023. "Coevolution of consensus and cooperation in evolutionary Hegselmann–Krause dilemma with the cooperation cost," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    6. Ding, Haixin & Xie, Li, 2024. "The applicability of positive information in negative opinion management: An attitude-laden communication perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
    7. Antonio Parravano & Ascensión Andina-Díaz & Miguel A Meléndez-Jiménez, 2016. "Bounded Confidence under Preferential Flip: A Coupled Dynamics of Structural Balance and Opinions," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-23, October.
    8. Azzimonti, Marina & Fernandes, Marcos, 2023. "Social media networks, fake news, and polarization," European Journal of Political Economy, Elsevier, vol. 76(C).
    9. Eger, Steffen, 2016. "Opinion dynamics and wisdom under out-group discrimination," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 97-107.
    10. Takesue, Hirofumi, 2023. "Relative opinion similarity leads to the emergence of large clusters in opinion formation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    11. Li, Tingyu & Zhu, Hengmin, 2020. "Effect of the media on the opinion dynamics in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    12. Hai-Bo Hu & Cang-Hai Li & Qing-Ying Miao, 2017. "Opinion Diffusion On Multilayer Social Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 20(06n07), pages 1-25, September.
    13. Mehrdad Agha Mohammad Ali Kermani & Reza Ghesmati & Masoud Jalayer, 2018. "Opinion-Aware Influence Maximization: How To Maximize A Favorite Opinion In A Social Network?," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-27, September.
    14. Huang, Changwei & Dai, Qionglin & Han, Wenchen & Feng, Yuee & Cheng, Hongyan & Li, Haihong, 2018. "Effects of heterogeneous convergence rate on consensus in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 428-435.
    15. Huang, Changwei & Bian, Huanyu & Han, Wenchen, 2024. "Breaking the symmetry neutralizes the extremization under the repulsion and higher order interactions," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    16. Han, Wenchen & Feng, Yuee & Qian, Xiaolan & Yang, Qihui & Huang, Changwei, 2020. "Clusters and the entropy in opinion dynamics on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    17. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    18. Shang, Lihui & Zhao, Mingming & Ai, Jun & Su, Zhan, 2021. "Opinion evolution in the Sznajd model on interdependent chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    19. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    20. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:590:y:2022:i:c:s037843712100933x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.