IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v589y2022ics0378437121008761.html
   My bibliography  Save this article

Entropy analysis of Boolean network reduction according to the determinative power of nodes

Author

Listed:
  • Pelz, Matthew
  • Velcsov, Mihaela T.

Abstract

Boolean networks are utilized to model systems in a variety of disciplines. The complexity of the systems under exploration often necessitates the construction of model networks with large numbers of nodes and unwieldy state spaces. A recently developed, entropy-based method for measuring the determinative power of each node offers a new method for identifying the most relevant nodes to include in subnetworks that may facilitate analysis of the parent network. We develop a determinative-power-based reduction algorithm and deploy it on 36 network types constructed through various combinations of settings with regards to the connectivity, topology, and functionality of networks. We construct subnetworks by eliminating nodes one-by-one beginning with the least determinative node. We compare entropy ratios between these subnetworks and the parent network and find that, for all network types, the change in network entropies (sums of conditional node entropies) follows a concave down decreasing curve, and the slightest reductions in network entropy occur with the initial reductions which eliminate the nodes with the least determinative power. Comparing across the three network characteristics, we find trends in the rates of decrease in the entropy ratios. In general, the decline occurs more slowly in networks with degree values assigned from a power-law distribution and canalyzing functions of higher canalization depth. We compare results of the determinative-power-based reduction with those of a randomized reduction and find that, in forming subnetworks with maximal network entropy, the determinative-power-based method performs as well as or better than the random method in all cases. Lastly, we compare findings based on this conditional-entropy-based calculation of network entropy with those of an alternative calculation using simple sums of (independent) node entropies to demonstrate the vast differences resulting from the two approaches.

Suggested Citation

  • Pelz, Matthew & Velcsov, Mihaela T., 2022. "Entropy analysis of Boolean network reduction according to the determinative power of nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
  • Handle: RePEc:eee:phsmap:v:589:y:2022:i:c:s0378437121008761
    DOI: 10.1016/j.physa.2021.126621
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121008761
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Epstein, Daniel & Bazzan, Ana L.C., 2013. "The value of less connected agents in Boolean networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5387-5398.
    2. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Wei & Shi, Yuming & Huang, Qiuling, 2014. "Modeling the Chinese language as an evolving network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 268-276.
    2. Yan Qiang & Bo Pei & Weili Wu & Juanjuan Zhao & Xiaolong Zhang & Yue Li & Lidong Wu, 2014. "Improvement of path analysis algorithm in social networks based on HBase," Journal of Combinatorial Optimization, Springer, vol. 28(3), pages 588-599, October.
    3. Stephanie Rend'on de la Torre & Jaan Kalda & Robert Kitt & Juri Engelbrecht, 2016. "On the topologic structure of economic complex networks: Empirical evidence from large scale payment network of Estonia," Papers 1602.04352, arXiv.org.
    4. Gabrielle Demange, 2012. "On the influence of a ranking system," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(2), pages 431-455, July.
    5. Tsao, J.Y. & Boyack, K.W. & Coltrin, M.E. & Turnley, J.G. & Gauster, W.B., 2008. "Galileo's stream: A framework for understanding knowledge production," Research Policy, Elsevier, vol. 37(2), pages 330-352, March.
    6. Pier Paolo Saviotti, 2011. "Knowledge, Complexity and Networks," Chapters, in: Cristiano Antonelli (ed.), Handbook on the Economic Complexity of Technological Change, chapter 6, Edward Elgar Publishing.
    7. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    8. Chung-Yuan Huang & Chuen-Tsai Sun & Hsun-Cheng Lin, 2005. "Influence of Local Information on Social Simulations in Small-World Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-8.
    9. Sun, Bingbin & Yao, Jialing & Xi, Lifeng, 2019. "Eigentime identities of fractal sailboat networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 338-349.
    10. Yang, Xu-Hua & Lou, Shun-Li & Chen, Guang & Chen, Sheng-Yong & Huang, Wei, 2013. "Scale-free networks via attaching to random neighbors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3531-3536.
    11. Colizza, Vittoria & Flammini, Alessandro & Maritan, Amos & Vespignani, Alessandro, 2005. "Characterization and modeling of protein–protein interaction networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(1), pages 1-27.
    12. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    13. Haider, Sajjad & Mariotti, Francesca, 2016. "The orchestration of alliance portfolios: The role of alliance portfolio capability," Scandinavian Journal of Management, Elsevier, vol. 32(3), pages 127-141.
    14. Lotfi, Nastaran & Rodrigues, Francisco A., 2022. "On the effect of memory on the Prisoner’s Dilemma game in correlated networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    15. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    16. L. Jarina Banu & P. Balasubramaniam, 2014. "Synchronisation of discrete-time complex networks with randomly occurring uncertainties, nonlinearities and time-delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(7), pages 1427-1450, July.
    17. Chen, Qinghua & Shi, Dinghua, 2004. "The modeling of scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 240-248.
    18. Csárdi, Gábor & Strandburg, Katherine J. & Zalányi, László & Tobochnik, Jan & Érdi, Péter, 2007. "Modeling innovation by a kinetic description of the patent citation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 783-793.
    19. Wang, Yi & Cao, Jinde & Jin, Zhen & Zhang, Haifeng & Sun, Gui-Quan, 2013. "Impact of media coverage on epidemic spreading in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5824-5835.
    20. Du, Siyuan & Guo, Chunxiang & Jin, Maozhu, 2016. "Agent-based simulation on tourists’ congestion control during peak travel period using Logit model," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 187-194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:589:y:2022:i:c:s0378437121008761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.